BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28210726)

  • 1. Exploring the interaction of phenothiazinium dyes methylene blue, new methylene blue, azure A and azure B with tRNA
    Paul P; Mati SS; Bhattacharya SC; Kumar GS
    Phys Chem Chem Phys; 2017 Mar; 19(9):6636-6653. PubMed ID: 28210726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting ribonucleic acids by toxic small molecules: structural perturbation and energetics of interaction of phenothiazinium dyes thionine and toluidine blue O to tRNA phe.
    Paul P; Kumar GS
    J Hazard Mater; 2013 Dec; 263 Pt 2():735-45. PubMed ID: 24231328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysical and calorimetric investigation on the structural reorganization of poly(A) by phenothiazinium dyes azure A and azure B.
    Paul P; Kumar GS
    Photochem Photobiol Sci; 2014 Aug; 13(8):1192-202. PubMed ID: 24953877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA.
    Paul P; Suresh Kumar G
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():303-10. PubMed ID: 23434558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the interaction of Azure dyes with t-RNA by hybrid spectroscopic and computational approaches and its applications toward human lung cancer cell line.
    Rajan D; Ilanchelian M
    Int J Biol Macromol; 2018 Jul; 113():1052-1061. PubMed ID: 29501842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and thermodynamic analysis of the binding of tRNA(phe) by the putative anticancer alkaloid chelerythrine: Spectroscopy, calorimetry and molecular docking studies.
    Basu P; Payghan PV; Ghoshal N; Suresh Kumar G
    J Photochem Photobiol B; 2016 Aug; 161():335-44. PubMed ID: 27289446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides.
    Khan AY; Suresh Kumar G
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():417-25. PubMed ID: 26241827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting different RNA motifs by beta carboline alkaloid, harmalol: a comparative photophysical, calorimetric, and molecular docking approach.
    Bhattacharjee P; Sarkar S; Pandya P; Bhadra K
    J Biomol Struct Dyn; 2016 Dec; 34(12):2722-2740. PubMed ID: 26629671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding interaction of phenothiazinium dyes with double stranded RNAs: Spectroscopic and calorimetric investigation.
    Saha B; Kumar GS
    J Photochem Photobiol B; 2017 Feb; 167():99-110. PubMed ID: 28056395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights on the interaction of phenothiazinium dyes methylene blue and new methylene blue with synthetic duplex RNAs through spectroscopy and modeling.
    Paul P; Mati SS; Kumar GS
    J Photochem Photobiol B; 2020 Mar; 204():111804. PubMed ID: 32007677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe).
    Das A; Bhadra K; Suresh Kumar G
    PLoS One; 2011; 6(8):e23186. PubMed ID: 21858023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of the anticancer alkaloid sanguinarine with tRNA(phe): spectroscopic and calorimetric studies.
    Hossain M; Kabir A; Suresh Kumar G
    J Biomol Struct Dyn; 2012; 30(2):223-34. PubMed ID: 22702734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and calorimetric investigations on the binding of phenazinium dyes safranine-O and phenosafranine to double stranded RNA polynucleotides.
    Saha B; Kumar GS
    J Photochem Photobiol B; 2016 Aug; 161():129-40. PubMed ID: 27236048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA targeting through binding of small molecules: Studies on t-RNA binding by the cytotoxic protoberberine alkaloid coralyne.
    Islam MM; Pandya P; Kumar S; Kumar GS
    Mol Biosyst; 2009 Mar; 5(3):244-54. PubMed ID: 19225615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical studies on the base specificity and energetics of the DNA interaction of photoactive dye thionine: spectroscopic and calorimetric approach.
    Paul P; Hossain M; Yadav RC; Kumar GS
    Biophys Chem; 2010 May; 148(1-3):93-103. PubMed ID: 20231052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the dimerization and site-specific cooperative interaction of Azure B with model transport proteins by spectroscopic and computational studies.
    Arumugam SS; Subramanian N; Malaichamy I
    J Photochem Photobiol B; 2016 Nov; 164():212-225. PubMed ID: 27693842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical, spectroscopic, and theoretical studies on the interaction between azathioprine and DNA.
    Jalali F; Rasaee G
    Int J Biol Macromol; 2015 Nov; 81():427-34. PubMed ID: 26282930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA intercalation by quinacrine and methylene blue: a comparative binding and thermodynamic characterization study.
    Hossain M; Giri P; Kumar GS
    DNA Cell Biol; 2008 Feb; 27(2):81-90. PubMed ID: 17924822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of phenazinium dyes with double-stranded poly(A): spectroscopy and isothermal titration calorimetry studies.
    Khan AY; Saha B; Kumar GS
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():615-24. PubMed ID: 24861262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactoferrin-phenothiazine dye interactions: Thermodynamic and kinetic approach.
    Coelho YL; de Paula HMC; Agudelo AJP; de Castro ASB; Hudson EA; Pires ACS; Silva LHM
    Int J Biol Macromol; 2019 Sep; 136():559-569. PubMed ID: 31207326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.