These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28210878)

  • 1. The role of weak interactions in lignin polymerization.
    Sánchez-González Á; Martín-Martínez FJ; Dobado JA
    J Mol Model; 2017 Mar; 23(3):80. PubMed ID: 28210878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures.
    Maia RA; Ventorim G; Batagin-Neto A
    J Mol Model; 2019 Jul; 25(8):228. PubMed ID: 31317341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study.
    Elder T; Rencoret J; Del Río JC; Kim H; Ralph J
    Front Plant Sci; 2021; 12():642848. PubMed ID: 33737945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical coupling reactions of piceatannol and monolignols: A density functional theory study.
    Elder T; Carlos Del Río J; Ralph J; Rencoret J; Kim H; Beckham GT
    Phytochemistry; 2019 Aug; 164():12-23. PubMed ID: 31060026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the thermal deconstruction of β-β' and 4-O-5 linkages in lignin model oligomers by density functional theory (DFT).
    Houston RW; Abdoulmoumine NH
    RSC Adv; 2023 Feb; 13(9):6181-6190. PubMed ID: 36825296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers.
    Watts HD; Mohamed MN; Kubicki JD
    J Phys Chem B; 2011 Mar; 115(9):1958-70. PubMed ID: 21319787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected polymerization mechanism of dilignol in the lignin growing.
    Matsushita Y; Oyabu Y; Aoki D; Fukushima K
    R Soc Open Sci; 2019 Jul; 6(7):190445. PubMed ID: 31417743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study.
    Watts HD; Mohamed MN; Kubicki JD
    Phys Chem Chem Phys; 2011 Dec; 13(47):20974-85. PubMed ID: 22009017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical factors that control lignin polymerization.
    Sangha AK; Davison BH; Standaert RF; Davis MF; Smith JC; Parks JM
    J Phys Chem B; 2014 Jan; 118(1):164-70. PubMed ID: 24341896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem.
    Morreel K; Ralph J; Kim H; Lu F; Goeminne G; Ralph S; Messens E; Boerjan W
    Plant Physiol; 2004 Nov; 136(3):3537-49. PubMed ID: 15516504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.
    Hong CY; Park SY; Kim SH; Lee SY; Choi WS; Choi IG
    J Microbiol; 2016 Oct; 54(10):675-85. PubMed ID: 27687230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tricin, a flavonoid monomer in monocot lignification.
    Lan W; Lu F; Regner M; Zhu Y; Rencoret J; Ralph SA; Zakai UI; Morreel K; Boerjan W; Ralph J
    Plant Physiol; 2015 Apr; 167(4):1284-95. PubMed ID: 25667313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
    Jiang X; Lu Q; Hu B; Liu J; Dong C; Yang Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation.
    Elder T; Berstis L; Beckham GT; Crowley MF
    J Agric Food Chem; 2016 Jun; 64(23):4742-50. PubMed ID: 27236926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-step biocatalytic depolymerization of lignin.
    Picart P; Liu H; Grande PM; Anders N; Zhu L; Klankermayer J; Leitner W; Domínguez de María P; Schwaneberg U; Schallmey A
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6277-6287. PubMed ID: 28634851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.
    Lahive CW; Deuss PJ; Lancefield CS; Sun Z; Cordes DB; Young CM; Tran F; Slawin AM; de Vries JG; Kamer PC; Westwood NJ; Barta K
    J Am Chem Soc; 2016 Jul; 138(28):8900-11. PubMed ID: 27310182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.