These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
574 related articles for article (PubMed ID: 28211069)
1. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea. Ye Z; Goutman JD; Pyott SJ; Glowatzki E J Physiol; 2017 Jun; 595(11):3483-3495. PubMed ID: 28211069 [TBL] [Abstract][Full Text] [Related]
2. Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse. Kearney G; Zorrilla de San Martín J; Vattino LG; Elgoyhen AB; Wedemeyer C; Katz E J Neurosci; 2019 May; 39(18):3360-3375. PubMed ID: 30755493 [TBL] [Abstract][Full Text] [Related]
3. Neurotransmission of the cochlear inner hair cell synapse--implications for inner ear therapy. Oestreicher E; Wolfgang A; Felix D Adv Otorhinolaryngol; 2002; 59():131-9. PubMed ID: 11885654 [TBL] [Abstract][Full Text] [Related]
4. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses. Klotz L; Wendler O; Frischknecht R; Shigemoto R; Schulze H; Enz R FASEB J; 2019 Dec; 33(12):13734-13746. PubMed ID: 31585509 [TBL] [Abstract][Full Text] [Related]
5. Compartmentalization of antagonistic Ca Moglie MJ; Fuchs PA; Elgoyhen AB; Goutman JD Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2095-E2104. PubMed ID: 29439202 [TBL] [Abstract][Full Text] [Related]
6. Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses. Johnson SL; Wedemeyer C; Vetter DE; Adachi R; Holley MC; Elgoyhen AB; Marcotti W Open Biol; 2013 Nov; 3(11):130163. PubMed ID: 24350389 [TBL] [Abstract][Full Text] [Related]
7. A Gain-of-Function Mutation in the α9 Nicotinic Acetylcholine Receptor Alters Medial Olivocochlear Efferent Short-Term Synaptic Plasticity. Wedemeyer C; Vattino LG; Moglie MJ; Ballestero J; Maison SF; Di Guilmi MN; Taranda J; Liberman MC; Fuchs PA; Katz E; Elgoyhen AB J Neurosci; 2018 Apr; 38(16):3939-3954. PubMed ID: 29572431 [TBL] [Abstract][Full Text] [Related]
8. Presynaptic modulation by metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons. Schrader LA; Tasker JG J Neurophysiol; 1997 Feb; 77(2):527-36. PubMed ID: 9065826 [TBL] [Abstract][Full Text] [Related]
9. Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release. Schwartz NE; Alford S J Neurophysiol; 2000 Jul; 84(1):415-27. PubMed ID: 10899215 [TBL] [Abstract][Full Text] [Related]
10. Glutamate suppresses GABA release via presynaptic metabotropic glutamate receptors at baroreceptor neurones in rats. Chen CY; Bonham AC J Physiol; 2005 Jan; 562(Pt 2):535-51. PubMed ID: 15539399 [TBL] [Abstract][Full Text] [Related]
11. Heterologous modulation of inhibitory synaptic transmission by metabotropic glutamate receptors in cultured hippocampal neurons. Fitzsimonds RM; Dichter MA J Neurophysiol; 1996 Feb; 75(2):885-93. PubMed ID: 8714661 [TBL] [Abstract][Full Text] [Related]
12. Modulation of glutamatergic transmission by metabotropic glutamate receptor activation in second-order neurons of the guinea pig nucleus tractus solitarius. Ohi Y; Kimura S; Haji A Brain Res; 2014 Sep; 1581():12-22. PubMed ID: 24792310 [TBL] [Abstract][Full Text] [Related]
13. Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse. Zorrilla de San Martín J; Pyott S; Ballestero J; Katz E J Neurosci; 2010 Sep; 30(36):12157-67. PubMed ID: 20826678 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms Underlying Enhancement of Spontaneous Glutamate Release by Group I mGluRs at a Central Auditory Synapse. Peng K; Wang X; Wang Y; Li D; Huang H; Lu Y J Neurosci; 2020 Sep; 40(37):7027-7042. PubMed ID: 32801152 [TBL] [Abstract][Full Text] [Related]
15. The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. Glowatzki E; Cheng N; Hiel H; Yi E; Tanaka K; Ellis-Davies GC; Rothstein JD; Bergles DE J Neurosci; 2006 Jul; 26(29):7659-64. PubMed ID: 16855093 [TBL] [Abstract][Full Text] [Related]
16. Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea. Zachary S; Nowak N; Vyas P; Bonanni L; Fuchs PA J Neurosci; 2018 Jun; 38(25):5677-5687. PubMed ID: 29789373 [TBL] [Abstract][Full Text] [Related]
17. Biophysical and pharmacological characterization of nicotinic cholinergic receptors in rat cochlear inner hair cells. Gómez-Casati ME; Fuchs PA; Elgoyhen AB; Katz E J Physiol; 2005 Jul; 566(Pt 1):103-18. PubMed ID: 15860528 [TBL] [Abstract][Full Text] [Related]
18. Cochlear dopamine release is modulated by group II metabotropic glutamate receptors via GABAergic neurotransmission. Doleviczényi Z; Halmos G; Répássy G; Vizi ES; Zelles T; Lendvai B Neurosci Lett; 2005 Sep; 385(2):93-8. PubMed ID: 15927369 [TBL] [Abstract][Full Text] [Related]
19. Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea. Roux I; Wersinger E; McIntosh JM; Fuchs PA; Glowatzki E J Neurosci; 2011 Oct; 31(42):15092-101. PubMed ID: 22016543 [TBL] [Abstract][Full Text] [Related]
20. Developmental regulation of nicotinic synapses on cochlear inner hair cells. Katz E; Elgoyhen AB; Gómez-Casati ME; Knipper M; Vetter DE; Fuchs PA; Glowatzki E J Neurosci; 2004 Sep; 24(36):7814-20. PubMed ID: 15356192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]