BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28211071)

  • 1. Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
    Nguyen DD; Wang B; Wei GW
    J Comput Chem; 2017 May; 38(13):941-948. PubMed ID: 28211071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Problems of robustness in Poisson-Boltzmann binding free energies.
    Harris RC; Mackoy T; Fenley MO
    J Chem Theory Comput; 2015 Feb; 11(2):705-12. PubMed ID: 26528091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of geometric singularities in implicit solvent models.
    Yu S; Geng W; Wei GW
    J Chem Phys; 2007 Jun; 126(24):244108. PubMed ID: 17614538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Grid Spacing in Poisson-Boltzmann Equation Binding Energy Estimation.
    Harris RC; Boschitsch AH; Fenley MO
    J Chem Theory Comput; 2013 Aug; 9(8):3677-3685. PubMed ID: 23997692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A; Lin FY; Roux B; MacKerell AD
    J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MIBPB: a software package for electrostatic analysis.
    Chen D; Chen Z; Chen C; Geng W; Wei GW
    J Comput Chem; 2011 Mar; 32(4):756-70. PubMed ID: 20845420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Features of CPB: a Poisson-Boltzmann solver that uses an adaptive Cartesian grid.
    Fenley MO; Harris RC; Mackoy T; Boschitsch AH
    J Comput Chem; 2015 Feb; 36(4):235-43. PubMed ID: 25430617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies.
    Forouzesh N; Izadi S; Onufriev AV
    J Chem Inf Model; 2017 Oct; 57(10):2505-2513. PubMed ID: 28786669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the MSMS and NanoShaper molecular surface triangulation codes in the TABI Poisson-Boltzmann solver.
    Wilson L; Krasny R
    J Comput Chem; 2021 Aug; 42(22):1552-1560. PubMed ID: 34041777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model.
    Yamagishi J; Okimoto N; Morimoto G; Taiji M
    J Comput Chem; 2014 Nov; 35(29):2132-9. PubMed ID: 25220475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.
    Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH
    J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.
    Wang C; Nguyen PH; Pham K; Huynh D; Le TB; Wang H; Ren P; Luo R
    J Comput Chem; 2016 Oct; 37(27):2436-46. PubMed ID: 27510546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential geometry based solvation model II: Lagrangian formulation.
    Chen Z; Baker NA; Wei GW
    J Math Biol; 2011 Dec; 63(6):1139-200. PubMed ID: 21279359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration Thermodynamics of Non-Polar Aromatic Hydrocarbons: Comparison of Implicit and Explicit Solvation Models.
    Lee H; Lim HK; Kim H
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30423973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P; Trylska J
    Biopolymers; 2008 Feb; 89(2):93-113. PubMed ID: 17969016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the assumptions underlying continuum-solvent models.
    Harris RC; Pettitt BM
    J Chem Theory Comput; 2015 Oct; 11(10):4593-600. PubMed ID: 26574250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing electrostatic field calculations with the adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces. I. Sampling and focusing.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2013 Oct; 117(39):11473-89. PubMed ID: 24041016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic potentials and electrostatic interaction energies of rat cytochrome b5 and a simulated anion-exchange adsorbent surface.
    Roush DJ; Gill DS; Willson RC
    Biophys J; 1994 May; 66(5):1290-300. PubMed ID: 8061185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.