These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28211367)

  • 1. High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization.
    Zhang H; Ma J; Bian Z; Zeng D; Feng Q; Chen W
    Phys Med Biol; 2017 Apr; 62(8):3313-3329. PubMed ID: 28211367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.
    Zhang H; Kruis M; Sonke JJ
    Phys Med Biol; 2017 Mar; 62(6):2254-2275. PubMed ID: 28140361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion-aware temporal regularization for improved 4D cone-beam computed tomography.
    Mory C; Janssens G; Rit S
    Phys Med Biol; 2016 Sep; 61(18):6856-6877. PubMed ID: 27588815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method.
    Jia X; Tian Z; Lou Y; Sonke JJ; Jiang SB
    Med Phys; 2012 Sep; 39(9):5592-602. PubMed ID: 22957625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-quality four-dimensional cone-beam CT by deforming prior images.
    Wang J; Gu X
    Phys Med Biol; 2013 Jan; 58(2):231-46. PubMed ID: 23257113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of 4D cone-beam CT algorithms for slowly rotating scanners.
    Bergner F; Berkus T; Oelhafen M; Kunz P; Pa T; Grimmer R; Ritschl L; Kachelriess M
    Med Phys; 2010 Sep; 37(9):5044-53. PubMed ID: 20964224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical use of iterative 4D-cone beam computed tomography reconstructions to investigate respiratory tumor motion in lung cancer patients.
    Schmidt ML; Poulsen PR; Toftegaard J; Hoffmann L; Hansen D; Sørensen TS
    Acta Oncol; 2014 Aug; 53(8):1107-13. PubMed ID: 24957556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration.
    Riblett MJ; Christensen GE; Weiss E; Hugo GD
    Med Phys; 2018 Oct; 45(10):4471-4482. PubMed ID: 30118177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation.
    Han H; Gao H; Xing L
    Phys Med Biol; 2017 Jul; 62(16):6408-6427. PubMed ID: 28726684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pilot evaluation of a 4-dimensional cone-beam computed tomographic scheme based on simultaneous motion estimation and image reconstruction.
    Dang J; Gu X; Pan T; Wang J
    Int J Radiat Oncol Biol Phys; 2015 Feb; 91(2):410-8. PubMed ID: 25636763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D liver tumor localization using cone-beam projections and a biomechanical model.
    Zhang Y; Folkert MR; Li B; Huang X; Meyer JJ; Chiu T; Lee P; Tehrani JN; Cai J; Parsons D; Jia X; Wang J
    Radiother Oncol; 2019 Apr; 133():183-192. PubMed ID: 30448003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Motion-compensated compressed sensing four-dimensional cone-beam CT reconstruction].
    Yang X; Zhang H; He J; Zeng D; Zhang XY; Bian ZY; Zhang J; Ma JH
    Nan Fang Yi Ke Da Xue Xue Bao; 2016 Jun; 36(7):969-73. PubMed ID: 27435778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction.
    Huang X; Zhang Y; Wang J
    Phys Med Biol; 2018 Feb; 63(4):045002. PubMed ID: 29328048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous 4D-CBCT reconstruction with sliding motion constraint.
    Dang J; Yin FF; You T; Dai C; Chen D; Wang J
    Med Phys; 2016 Oct; 43(10):5453. PubMed ID: 27782722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.
    Yan H; Zhen X; Folkerts M; Li Y; Pan T; Cervino L; Jiang SB; Jia X
    Med Phys; 2014 Jul; 41(7):071903. PubMed ID: 24989381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.