BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28211453)

  • 1. Mechanism of partial agonism in AMPA-type glutamate receptors.
    Salazar H; Eibl C; Chebli M; Plested A
    Nat Commun; 2017 Feb; 8():14327. PubMed ID: 28211453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced efficacy without further cleft closure: reevaluating twist as a source of agonist efficacy in AMPA receptors.
    Birdsey-Benson A; Gill A; Henderson LP; Madden DR
    J Neurosci; 2010 Jan; 30(4):1463-70. PubMed ID: 20107073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitatory amino acid receptor ligands: resolution, absolute stereochemistry, and enantiopharmacology of 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid.
    Johansen TN; Ebert B; Bräuner-Osborne H; Didriksen M; Christensen IT; Søby KK; Madsen U; Krogsgaard-Larsen P; Brehm L
    J Med Chem; 1998 Mar; 41(6):930-9. PubMed ID: 9526567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional partial agonism at ionotropic excitatory amino acid receptors.
    Ebert B; Madsen U; Søby KK; Krogsgaard-Larsen P
    Neurochem Int; 1996 Sep; 29(3):309-16. PubMed ID: 8885290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of partial agonism at the GluR2 AMPA receptor: Measurements of lobe orientation in solution.
    Maltsev AS; Ahmed AH; Fenwick MK; Jane DE; Oswald RE
    Biochemistry; 2008 Oct; 47(40):10600-10. PubMed ID: 18795801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective agonist binding of (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) and 2S-(2alpha,3beta,4beta)-2-carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid (kainate) receptors: a molecular modeling study.
    Pentikäinen OT; Settimo L; Keinänen K; Johnson MS
    Biochem Pharmacol; 2003 Dec; 66(12):2413-25. PubMed ID: 14637199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The respective N-hydroxypyrazole analogues of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid.
    Clausen RP; Hansen KB; Calí P; Nielsen B; Greenwood JR; Begtrup M; Egebjerg J; Bräuner-Osborne H
    Eur J Pharmacol; 2004 Sep; 499(1-2):35-44. PubMed ID: 15363949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Functional Properties of Drosophila CNS Glutamate Receptors.
    Li Y; Dharkar P; Han TH; Serpe M; Lee CH; Mayer ML
    Neuron; 2016 Dec; 92(5):1036-1048. PubMed ID: 27889096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the function, conformational plasticity, and dimer-dimer contacts of the GluR2 ligand-binding core: studies of 5-substituted willardiines and GluR2 S1S2 in the crystal.
    Jin R; Gouaux E
    Biochemistry; 2003 May; 42(18):5201-13. PubMed ID: 12731861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for partial agonist action at ionotropic glutamate receptors.
    Jin R; Banke TG; Mayer ML; Traynelis SF; Gouaux E
    Nat Neurosci; 2003 Aug; 6(8):803-10. PubMed ID: 12872125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPA receptor agonists: resolution, configurational assignment, and pharmacology of (+)-(S)- and (-)-(R)-2-amino-3-[3-hydroxy-5-(2-pyridyl)-isoxazol-4-yl]-propionic acid (2-Py-AMPA).
    Johansen TN; Ebert B; Falch E; Krogsgaard-Larsen P
    Chirality; 1997; 9(3):274-80. PubMed ID: 9176992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics and mechanism of the interaction of willardiine partial agonists with a glutamate receptor: implications for drug development.
    Martinez M; Ahmed AH; Loh AP; Oswald RE
    Biochemistry; 2014 Jun; 53(23):3790-5. PubMed ID: 24850223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The AMPA receptor as a therapeutic target: current perspectives and emerging possibilities.
    Mellor IR
    Future Med Chem; 2010 May; 2(5):877-91. PubMed ID: 21426207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes.
    Armstrong N; Mayer M; Gouaux E
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5736-41. PubMed ID: 12730367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists.
    Mayer ML; Ghosal A; Dolman NP; Jane DE
    J Neurosci; 2006 Mar; 26(11):2852-61. PubMed ID: 16540562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core.
    Armstrong N; Gouaux E
    Neuron; 2000 Oct; 28(1):165-81. PubMed ID: 11086992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation.
    Baranovic J; Chebli M; Salazar H; Carbone AL; Faelber K; Lau AY; Daumke O; Plested AJ
    Biophys J; 2016 Feb; 110(4):896-911. PubMed ID: 26910426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population Shift Mechanism for Partial Agonism of AMPA Receptor.
    Oshima H; Re S; Sakakura M; Takahashi H; Sugita Y
    Biophys J; 2019 Jan; 116(1):57-68. PubMed ID: 30573176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors.
    Johansen TN; Greenwood JR; Frydenvang K; Madsen U; Krogsgaard-Larsen P
    Chirality; 2003 Feb; 15(2):167-79. PubMed ID: 12520509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conserved mechanism for gating in an ionotropic glutamate receptor.
    Moore BS; Mirshahi UL; Ebersole TL; Mirshahi T
    J Biol Chem; 2013 Jun; 288(26):18842-52. PubMed ID: 23671286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.