These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28211517)

  • 1. Edge currents shunt the insulating bulk in gapped graphene.
    Zhu MJ; Kretinin AV; Thompson MD; Bandurin DA; Hu S; Yu GL; Birkbeck J; Mishchenko A; Vera-Marun IJ; Watanabe K; Taniguchi T; Polini M; Prance JR; Novoselov KS; Geim AK; Ben Shalom M
    Nat Commun; 2017 Feb; 8():14552. PubMed ID: 28211517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging Bulk and Edge Transport near the Dirac Point in Graphene Moiré Superlattices.
    Dou Z; Morikawa S; Cresti A; Wang SW; Smith CG; Melios C; Kazakova O; Watanabe K; Taniguchi T; Masubuchi S; Machida T; Connolly MR
    Nano Lett; 2018 Apr; 18(4):2530-2537. PubMed ID: 29529371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneously gapped ground state in suspended bilayer graphene.
    Freitag F; Trbovic J; Weiss M; Schönenberger C
    Phys Rev Lett; 2012 Feb; 108(7):076602. PubMed ID: 22401232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetoresistance measurements of graphene at the charge neutrality point.
    Zhao Y; Cadden-Zimansky P; Ghahari F; Kim P
    Phys Rev Lett; 2012 Mar; 108(10):106804. PubMed ID: 22463440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The induced nontrivial Z 2 topological phase in graphene sandwiched by pnictogen bilayers.
    Shu C; Qu J; Peng X; Yang H; Liu W; Wei X; Zhang K; Zhong J
    J Phys Condens Matter; 2016 Jun; 28(23):235502. PubMed ID: 27160385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge Modes and Nonlocal Conductance in Graphene Superlattices.
    Brown R; Walet NR; Guinea F
    Phys Rev Lett; 2018 Jan; 120(2):026802. PubMed ID: 29376706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant nonlocality near the Dirac point in graphene.
    Abanin DA; Morozov SV; Ponomarenko LA; Gorbachev RV; Mayorov AS; Katsnelson MI; Watanabe K; Taniguchi T; Novoselov KS; Levitov LS; Geim AK
    Science; 2011 Apr; 332(6027):328-30. PubMed ID: 21493852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Transport Measurements of Fractional Quantum Hall Energy Gaps in Edgeless Graphene Devices.
    Polshyn H; Zhou H; Spanton EM; Taniguchi T; Watanabe K; Young AF
    Phys Rev Lett; 2018 Nov; 121(22):226801. PubMed ID: 30547606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset of an insulating zero-plateau quantum Hall state in graphene.
    Shimshoni E; Fertig HA; Pai GV
    Phys Rev Lett; 2009 May; 102(20):206408. PubMed ID: 19519051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulating behavior at the neutrality point in single-layer graphene.
    Amet F; Williams JR; Watanabe K; Taniguchi T; Goldhaber-Gordon D
    Phys Rev Lett; 2013 May; 110(21):216601. PubMed ID: 23745906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical Edge States and Quantum Phase Transitions in Tetralayer Graphene.
    Che S; Shi Y; Yang J; Tian H; Chen R; Taniguchi T; Watanabe K; Smirnov D; Lau CN; Shimshoni E; Murthy G; Fertig HA
    Phys Rev Lett; 2020 Jul; 125(3):036803. PubMed ID: 32745392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hall conductance in graphene with point defects.
    İslamoğlu S; Oktel MÖ; Gülseren O
    J Phys Condens Matter; 2013 Feb; 25(5):055302. PubMed ID: 23300159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helical quantum Hall phase in graphene on SrTiO
    Veyrat L; Déprez C; Coissard A; Li X; Gay F; Watanabe K; Taniguchi T; Han Z; Piot BA; Sellier H; Sacépé B
    Science; 2020 Feb; 367(6479):781-786. PubMed ID: 32054761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipolar supercurrent in graphene.
    Heersche HB; Jarillo-Herrero P; Oostinga JB; Vandersypen LM; Morpurgo AF
    Nature; 2007 Mar; 446(7131):56-9. PubMed ID: 17330038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marginally Self-Averaging One-Dimensional Localization in Bilayer Graphene.
    Aamir MA; Karnatak P; Jayaraman A; Sai TP; Ramakrishnan TV; Sensarma R; Ghosh A
    Phys Rev Lett; 2018 Sep; 121(13):136806. PubMed ID: 30312065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological Valley Currents in Gapped Dirac Materials.
    Lensky YD; Song JC; Samutpraphoot P; Levitov LS
    Phys Rev Lett; 2015 Jun; 114(25):256601. PubMed ID: 26197137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice.
    Indolese DI; Delagrange R; Makk P; Wallbank JR; Wanatabe K; Taniguchi T; Schönenberger C
    Phys Rev Lett; 2018 Sep; 121(13):137701. PubMed ID: 30312070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent currents in a graphene ring with armchair edges.
    Huang BL; Chang MC; Mou CY
    J Phys Condens Matter; 2012 Jun; 24(24):245304. PubMed ID: 22617621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Quality Magnetotransport in Graphene Using the Edge-Free Corbino Geometry.
    Zeng Y; Li JIA; Dietrich SA; Ghosh OM; Watanabe K; Taniguchi T; Hone J; Dean CR
    Phys Rev Lett; 2019 Apr; 122(13):137701. PubMed ID: 31012609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximity-induced surface superconductivity in Dirac semimetal Cd
    Huang C; Zhou BT; Zhang H; Yang B; Liu R; Wang H; Wan Y; Huang K; Liao Z; Zhang E; Liu S; Deng Q; Chen Y; Han X; Zou J; Lin X; Han Z; Wang Y; Law KT; Xiu F
    Nat Commun; 2019 May; 10(1):2217. PubMed ID: 31101813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.