These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28211686)

  • 1. Multipole Moments in the Effective Fragment Potential Method.
    Bertoni C; Slipchenko LV; Misquitta AJ; Gordon MS
    J Phys Chem A; 2017 Mar; 121(9):2056-2067. PubMed ID: 28211686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set.
    Flick JC; Kosenkov D; Hohenstein EG; Sherrill CD; Slipchenko LV
    J Chem Theory Comput; 2012 Aug; 8(8):2835-43. PubMed ID: 26592124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic energy in the effective fragment potential method: theory and application to benzene dimer.
    Slipchenko LV; Gordon MS
    J Comput Chem; 2007 Jan; 28(1):276-91. PubMed ID: 17143863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed Multipoles from a Robust Basis-Space Implementation of the Iterated Stockholder Atoms Procedure.
    Misquitta AJ; Stone AJ; Fazeli F
    J Chem Theory Comput; 2014 Dec; 10(12):5405-18. PubMed ID: 26583224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion Interactions in QM/EFP.
    Slipchenko LV; Gordon MS; Ruedenberg K
    J Phys Chem A; 2017 Dec; 121(49):9495-9507. PubMed ID: 29120179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basis set consistent revision of the S22 test set of noncovalent interaction energies.
    Takatani T; Hohenstein EG; Malagoli M; Marshall MS; Sherrill CD
    J Chem Phys; 2010 Apr; 132(14):144104. PubMed ID: 20405982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Fragment Potential Method for H-Bonding: How To Obtain Parameters for Nonrigid Fragments.
    Dubinets N; Slipchenko LV
    J Phys Chem A; 2017 Jul; 121(28):5301-5312. PubMed ID: 28587456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases.
    Marshall MS; Burns LA; Sherrill CD
    J Chem Phys; 2011 Nov; 135(19):194102. PubMed ID: 22112061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the effects of heterogeneity on delocalized pi...pi interaction energies.
    Bates DM; Anderson JA; Oloyede P; Tschumper GS
    Phys Chem Chem Phys; 2008 May; 10(19):2775-9. PubMed ID: 18464993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving a distribution of charge into intrinsic multipole moments: a rankwise distributed multipole analysis.
    Gramada A; Bourne PE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066601. PubMed ID: 19256962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed Multipole Analysis:  Stability for Large Basis Sets.
    Stone AJ
    J Chem Theory Comput; 2005 Nov; 1(6):1128-32. PubMed ID: 26631656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basis set dependence of higher-order correlation effects in π-type interactions.
    Carrell EJ; Thorne CM; Tschumper GS
    J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the Effective Fragment Potential Method with Symmetry-Adapted Perturbation Theory in the Calculation of Intermolecular Energies for Ionic Liquids.
    Tan SY; Izgorodina EI
    J Chem Theory Comput; 2016 Jun; 12(6):2553-68. PubMed ID: 27116302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orbital-optimized MP2.5 and its analytic gradients: approaching CCSD(T) quality for noncovalent interactions.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2014 Nov; 141(20):204105. PubMed ID: 25429931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Accurate Quantum-Based Approach to Explicit Solvent Effects: Interfacing the General Effective Fragment Potential Method with
    Sattasathuchana T; Xu P; Gordon MS
    J Phys Chem A; 2019 Oct; 123(39):8460-8475. PubMed ID: 31365250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.