These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 28211711)
1. Impact of Laser Beam Speckle Structure on Crossed Beam Energy Transfer via Beam Deflections and Ponderomotive Self-Focusing. Raj G; Hüller S Phys Rev Lett; 2017 Feb; 118(5):055002. PubMed ID: 28211711 [TBL] [Abstract][Full Text] [Related]
2. Crossed beam energy transfer between optically smoothed laser beams in inhomogeneous plasmas. Hüller S; Raj G; Luo M; Rozmus W; Pesme D Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200038. PubMed ID: 33040659 [TBL] [Abstract][Full Text] [Related]
3. Laser-beam smoothing induced by stimulated brillouin scattering in an inhomogeneous plasma. Loiseau P; Morice O; Teychenné D; Casanova M; Hüller S; Pesme D Phys Rev Lett; 2006 Nov; 97(20):205001. PubMed ID: 17155686 [TBL] [Abstract][Full Text] [Related]
4. Reduction of Cross-Beam Energy Transfer by a Speckle Pattern. Oudin A; Debayle A; Ruyer C; Bénisti D Phys Rev Lett; 2021 Dec; 127(26):265001. PubMed ID: 35029462 [TBL] [Abstract][Full Text] [Related]
5. Interactive dynamics of two copropagating laser beams in underdense plasmas. Wu HC; Sheng ZM; Zhang J Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026407. PubMed ID: 15447601 [TBL] [Abstract][Full Text] [Related]
6. Modeling the ponderomotive interaction of high-power laser beams with collisional plasma: the FDTD-based approach. Lin Z; Chen X; Ding P; Qiu W; Pu J Opt Express; 2017 Apr; 25(7):8440-8449. PubMed ID: 28380955 [TBL] [Abstract][Full Text] [Related]
7. Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions. Igumenshchev IV; Froula DH; Edgell DH; Goncharov VN; Kessler TJ; Marshall FJ; McCrory RL; McKenty PW; Meyerhofer DD; Michel DT; Sangster TC; Seka W; Skupsky S Phys Rev Lett; 2013 Apr; 110(14):145001. PubMed ID: 25166997 [TBL] [Abstract][Full Text] [Related]
8. Spatial and Transient Effects during the Amplification of a Picosecond Pulse Beam by a Nanosecond Pump. Neuville C; Baccou C; Debayle A; Masson-Laborde PE; Hüller S; Casanova M; Marion D; Loiseau P; Glize K; Labaune C; Depierreux S Phys Rev Lett; 2016 Sep; 117(14):145001. PubMed ID: 27740791 [TBL] [Abstract][Full Text] [Related]
9. Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma. Labaune C; Baldis HA; Schifano E; Bauer BS; Maximov A; Ourdev I; Rozmus W; Pesme D Phys Rev Lett; 2000 Aug; 85(8):1658-61. PubMed ID: 10970582 [TBL] [Abstract][Full Text] [Related]
10. Modeling of the cross-beam energy transfer with realistic inertial-confinement-fusion beams in a large-scale hydrocode. Colaïtis A; Duchateau G; Ribeyre X; Tikhonchuk V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013102. PubMed ID: 25679718 [TBL] [Abstract][Full Text] [Related]
11. Laser-energy transfer and enhancement of plasma waves and electron beams by interfering high-intensity laser pulses. Zhang P; Saleh N; Chen S; Sheng ZM; Umstadter D Phys Rev Lett; 2003 Nov; 91(22):225001. PubMed ID: 14683245 [TBL] [Abstract][Full Text] [Related]
12. Relativistic focusing and ponderomotive channeling of intense laser beams. Hafizi B; Ting A; Sprangle P; Hubbard RF Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4120-5. PubMed ID: 11088939 [TBL] [Abstract][Full Text] [Related]
13. Modification of spatial and temporal gains of stimulated brillouin and raman scattering by polarization smoothing. Fuchs J; Labaune C; Depierreux S; Baldis HA; Michard A Phys Rev Lett; 2000 Apr; 84(14):3089-92. PubMed ID: 11019019 [TBL] [Abstract][Full Text] [Related]
14. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth. Bates JW; Myatt JF; Shaw JG; Follett RK; Weaver JL; Lehmberg RH; Obenschain SP Phys Rev E; 2018 Jun; 97(6-1):061202. PubMed ID: 30011586 [TBL] [Abstract][Full Text] [Related]
15. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility. Marozas JA; Hohenberger M; Rosenberg MJ; Turnbull D; Collins TJB; Radha PB; McKenty PW; Zuegel JD; Marshall FJ; Regan SP; Sangster TC; Seka W; Campbell EM; Goncharov VN; Bowers MW; Di Nicola JG; Erbert G; MacGowan BJ; Pelz LJ; Yang ST Phys Rev Lett; 2018 Feb; 120(8):085001. PubMed ID: 29543010 [TBL] [Abstract][Full Text] [Related]
16. Saturation of backward stimulated scattering of a laser beam in the kinetic regime. Yin L; Albright BJ; Bowers KJ; Daughton W; Rose HA Phys Rev Lett; 2007 Dec; 99(26):265004. PubMed ID: 18233584 [TBL] [Abstract][Full Text] [Related]
17. Gain characteristics of stimulated Brillouin scattering in fused silica. Chen B; Bai Z; Hun X; Wang J; Cui C; Qi Y; Yan B; Ding J; Wang K; Wang Y; Lu Z Opt Express; 2023 Feb; 31(4):5699-5707. PubMed ID: 36823843 [TBL] [Abstract][Full Text] [Related]
18. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Michel P; Divol L; Williams EA; Weber S; Thomas CA; Callahan DA; Haan SW; Salmonson JD; Dixit S; Hinkel DE; Edwards MJ; Macgowan BJ; Lindl JD; Glenzer SH; Suter LJ Phys Rev Lett; 2009 Jan; 102(2):025004. PubMed ID: 19257284 [TBL] [Abstract][Full Text] [Related]