These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28211713)

  • 21. Efficiency of Harmonic Quantum Otto Engines at Maximal Power.
    Deffner S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A; Slaoui A; Ahl Laamara R
    Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of asymmetric quantum Otto engine cycles.
    Shastri R; Venkatesh BP
    Phys Rev E; 2022 Aug; 106(2-1):024123. PubMed ID: 36109960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum Otto-type heat engine with fixed frequency.
    Matos RQ; de Assis RJ; de Almeida NG
    Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V; Singh S; Abah O; Müstecaplıoğlu ÖE
    Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach.
    Peña FJ; Negrete O; Alvarado Barrios G; Zambrano D; González A; Nunez AS; Orellana PA; Vargas P
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Powering quantum Otto engines only with q-deformation of the working substance.
    Ozaydin F; Müstecaplıoğlu ÖE; Hakioğlu T
    Phys Rev E; 2023 Nov; 108(5-1):054103. PubMed ID: 38115457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S; Saha M; Venkatesh BP; Agarwalla BK
    Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum Otto engine of a two-level atom with single-mode fields.
    Wang J; Wu Z; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041148. PubMed ID: 22680458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS; Batalhão TB; Herrera M; Souza AM; Sarthour RS; Oliveira IS; Serra RM
    Phys Rev Lett; 2019 Dec; 123(24):240601. PubMed ID: 31922824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two coupled double quantum-dot systems as a working substance for heat machines.
    de Oliveira JLD; Rojas M; Filgueiras C
    Phys Rev E; 2021 Jul; 104(1-1):014149. PubMed ID: 34412368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian.
    Rasola M; Möttönen M
    Sci Rep; 2024 Apr; 14(1):9448. PubMed ID: 38658607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-space interference in extensive and nonextensive quantum heat engines.
    Hardal AÜC; Paternostro M; Müstecaplıoğlu ÖE
    Phys Rev E; 2018 Apr; 97(4-1):042127. PubMed ID: 29758690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
    Insinga A; Andresen B; Salamon P
    Phys Rev E; 2016 Jul; 94(1-1):012119. PubMed ID: 27575089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Otto engine beyond its standard quantum limit.
    Leggio B; Antezza M
    Phys Rev E; 2016 Feb; 93(2):022122. PubMed ID: 26986303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Full statistics of nonequilibrium heat and work for many-body quantum Otto engines and universal bounds: A nonequilibrium Green's function approach.
    Mohanta S; Agarwalla BK
    Phys Rev E; 2023 Dec; 108(6-1):064127. PubMed ID: 38243491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum correlated heat engine with spin squeezing.
    Altintas F; Hardal AÜ; Müstecaplıoglu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032102. PubMed ID: 25314390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.