BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28211795)

  • 1. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses.
    Clites TR; Carty MJ; Srinivasan S; Zorzos AN; Herr HM
    J Neural Eng; 2017 Jun; 14(3):036002. PubMed ID: 28211795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caprine Models of the Agonist-Antagonist Myoneural Interface Implemented at the Above- and Below-Knee Amputation Levels.
    Clites TR; Carty MJ; Srinivasan SS; Talbot SG; Brånemark R; Herr HM
    Plast Reconstr Surg; 2019 Aug; 144(2):218e-229e. PubMed ID: 31348345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proprioception from a neurally controlled lower-extremity prosthesis.
    Clites TR; Carty MJ; Ullauri JB; Carney ME; Mooney LM; Duval JF; Srinivasan SS; Herr HM
    Sci Transl Med; 2018 May; 10(443):. PubMed ID: 29848665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Agonist-Antagonist Myoneural Interface in a Transtibial Amputation.
    Harrington CJ; Dearden M; Richards J; Carty M; Souza J; Potter BK
    JBJS Essent Surg Tech; 2023; 13(3):. PubMed ID: 38282725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards functional restoration for persons with limb amputation: A dual-stage implementation of regenerative agonist-antagonist myoneural interfaces.
    Srinivasan SS; Diaz M; Carty M; Herr HM
    Sci Rep; 2019 Feb; 9(1):1981. PubMed ID: 30760764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of bilateral motor coordination from preserved agonist-antagonist coupling in amputation musculature.
    Shu T; Huang SS; Shallal C; Herr HM
    J Neuroeng Rehabil; 2021 Feb; 18(1):38. PubMed ID: 33596960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation.
    Srinivasan SS; Gutierrez-Arango S; Teng AC; Israel E; Song H; Bailey ZK; Carty MJ; Freed LE; Herr HM
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33593940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses.
    Markovic M; Karnal H; Graimann B; Farina D; Dosen S
    J Neural Eng; 2017 Jun; 14(3):036007. PubMed ID: 28355147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.
    Zhang Q; Hayashibe M; Azevedo-Coste C
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2299-307. PubMed ID: 23529189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On prosthetic control: A regenerative agonist-antagonist myoneural interface.
    Srinivasan SS; Carty MJ; Calvaresi PW; Clites TR; Maimon BE; Taylor CR; Zorzos AN; Herr H
    Sci Robot; 2017 May; 2(6):. PubMed ID: 33157872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs.
    Srinivasan SS; Tuckute G; Zou J; Gutierrez-Arango S; Song H; Barry RL; Herr HM
    Sci Transl Med; 2020 Dec; 12(573):. PubMed ID: 33298564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of a biological sensorimotor interface for bionic reconstruction.
    Festin C; Ortmayr J; Maierhofer U; Tereshenko V; Blumer R; Schmoll M; Carrero-Rojas G; Luft M; Laengle G; Farina D; Bergmeister KD; Aszmann OC
    Nat Commun; 2024 Jun; 15(1):5337. PubMed ID: 38914540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of natural spinal reflex loops in the sensory-motor control of hand prostheses.
    Sagastegui Alva PG; Boesendorfer A; Aszmann OC; Ibáñez J; Farina D
    Sci Robot; 2024 May; 9(90):eadl0085. PubMed ID: 38809994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation.
    Asadi AR; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):499-509. PubMed ID: 22711783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity.
    Lyle MA; Prilutsky BI; Gregor RJ; Abelew TA; Nichols TR
    J Neurophysiol; 2016 Sep; 116(3):1055-67. PubMed ID: 27306676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces.
    Egeland BM; Urbanchek MG; Peramo A; Richardson-Burns SM; Martin DC; Kipke DR; Kuzon WM; Cederna PS
    Plast Reconstr Surg; 2010 Dec; 126(6):1865-1873. PubMed ID: 20700080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of spindle afferents in rat soleus muscle using ramp-and-hold and sinusoidal stretches.
    De-Doncker L; Picquet F; Petit J; Falempin M
    J Neurophysiol; 2003 Jan; 89(1):442-9. PubMed ID: 12522192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ewing Amputation: The First Human Implementation of the Agonist-Antagonist Myoneural Interface.
    Clites TR; Herr HM; Srinivasan SS; Zorzos AN; Carty MJ
    Plast Reconstr Surg Glob Open; 2018 Nov; 6(11):e1997. PubMed ID: 30881798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory control of normal movement and of movement aided by neural prostheses.
    Prochazka A
    J Anat; 2015 Aug; 227(2):167-77. PubMed ID: 26047134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological properties of primary sensory neurons appropriately and inappropriately innervating skeletal muscle in adult rats.
    Lewin GR; McMahon SB
    J Neurophysiol; 1991 Oct; 66(4):1218-31. PubMed ID: 1761981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.