These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 28211796)
1. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam. Lourenço A; Thomas R; Homer M; Bouchard H; Rossomme S; Renaud J; Kanai T; Royle G; Palmans H Phys Med Biol; 2017 Apr; 62(7):N134-N146. PubMed ID: 28211796 [TBL] [Abstract][Full Text] [Related]
2. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams. Lourenço A; Thomas R; Bouchard H; Kacperek A; Vondracek V; Royle G; Palmans H Med Phys; 2016 Jul; 43(7):4122. PubMed ID: 27370132 [TBL] [Abstract][Full Text] [Related]
3. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam. Rossomme S; Palmans H; Shipley D; Thomas R; Lee N; Romano F; Cirrone P; Cuttone G; Bertrand D; Vynckier S Phys Med Biol; 2013 Aug; 58(16):5363-80. PubMed ID: 23877166 [TBL] [Abstract][Full Text] [Related]
4. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations. Palmans H; Al-Sulaiti L; Andreo P; Shipley D; Lühr A; Bassler N; Martinkovič J; Dobrovodský J; Rossomme S; Thomas RA; Kacperek A Phys Med Biol; 2013 May; 58(10):3481-99. PubMed ID: 23629423 [TBL] [Abstract][Full Text] [Related]
5. Fluence correction factors and stopping power ratios for clinical ion beams. Lühr A; Hansen DC; Sobolevsky N; Palmans H; Rossomme S; Bassler N Acta Oncol; 2011 Aug; 50(6):797-805. PubMed ID: 21767177 [TBL] [Abstract][Full Text] [Related]
6. Reference dosimetry for light-ion beams based on graphite calorimetry. Rossomme S; Palmans H; Thomas R; Lee N; Duane S; Bailey M; Shipley D; Bertrand D; Romano F; Cirrone P; Cuttone G; Vynckier S Radiat Prot Dosimetry; 2014 Oct; 161(1-4):92-5. PubMed ID: 24336190 [TBL] [Abstract][Full Text] [Related]
7. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams. Lourenço A; Wellock N; Thomas R; Homer M; Bouchard H; Kanai T; MacDougall N; Royle G; Palmans H Phys Med Biol; 2016 Nov; 61(21):7623-7638. PubMed ID: 27740943 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams. Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621 [TBL] [Abstract][Full Text] [Related]
9. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry. Rossomme S; Palmans H; Thomas R; Lee N; Bailey M; Shipley D; Al-Sulaiti L; Cirrone P; Romano F; Kacperek A; Bertrand D; Vynckier S Med Phys; 2012 Jun; 39(6Part12):3736-3737. PubMed ID: 28517815 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams. Lourenço A; Shipley D; Wellock N; Thomas R; Bouchard H; Kacperek A; Fracchiolla F; Lorentini S; Schwarz M; MacDougall N; Royle G; Palmans H Phys Med Biol; 2017 May; 62(10):3883-3901. PubMed ID: 28319031 [TBL] [Abstract][Full Text] [Related]
11. Fluence correction factors in plastic phantoms for clinical proton beams. Palmans H; Symons JE; Denis JM; de Kock EA; Jones DT; Vynckier S Phys Med Biol; 2002 Sep; 47(17):3055-71. PubMed ID: 12361210 [TBL] [Abstract][Full Text] [Related]
12. Ionization chamber dosimetry based on Araki F; Ohno T; Umeno S Phys Med Biol; 2018 Sep; 63(18):185018. PubMed ID: 30101751 [TBL] [Abstract][Full Text] [Related]
13. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter. Harty PD; Lye JE; Ramanathan G; Butler DJ; Hall CJ; Stevenson AW; Johnston PN Med Phys; 2014 May; 41(5):052101. PubMed ID: 24784390 [TBL] [Abstract][Full Text] [Related]
14. Direct measurement of electron beam quality conversion factors using water calorimetry. Renaud J; Sarfehnia A; Marchant K; McEwen M; Ross C; Seuntjens J Med Phys; 2015 Nov; 42(11):6357-68. PubMed ID: 26520727 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types. Muir BR; Rogers DW Med Phys; 2014 Nov; 41(11):111701. PubMed ID: 25370615 [TBL] [Abstract][Full Text] [Related]
16. Aerrow: A probe-format graphite calorimeter for absolute dosimetry of high-energy photon beams in the clinical environment. Renaud J; Sarfehnia A; Bancheri J; Seuntjens J Med Phys; 2018 Jan; 45(1):414-428. PubMed ID: 29131344 [TBL] [Abstract][Full Text] [Related]
17. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams. Palmans H; Thomas R; Simon M; Duane S; Kacperek A; DuSautoy A; Verhaegen F Phys Med Biol; 2004 Aug; 49(16):3737-49. PubMed ID: 15446802 [TBL] [Abstract][Full Text] [Related]
18. Experimental determination of field factors ([Formula: see text]) for small radiotherapy beams using the daisy chain correction method. Lárraga-Gutiérrez JM Phys Med Biol; 2015 Aug; 60(15):5813-31. PubMed ID: 26161448 [TBL] [Abstract][Full Text] [Related]
19. Re-evaluation of correction factors of a primary standard graphite calorimeter in 60Co gamma ray beams as a basis for the appointment of the BEV absorbed dose rate to water reference value. Baumgartner A; Steurer A; Tiefenböck W; Gabris F; Maringer FJ; Kapsch RP; Stucki G Radiat Prot Dosimetry; 2011 Apr; 145(1):3-12. PubMed ID: 21112889 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4. Baumann KS; Kaupa S; Bach C; Engenhart-Cabillic R; Zink K Phys Med Biol; 2020 Mar; 65(5):055015. PubMed ID: 31962306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]