These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28211899)

  • 1. Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate.
    Konishi T; Clarke E; Burrows CW; Bomphrey JJ; Murray R; Bell GR
    Sci Rep; 2017 Feb; 7():42606. PubMed ID: 28211899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications.
    Wang YR; Han IS; Jin CY; Hopkinson M
    ACS Appl Nano Mater; 2020 May; 3(5):4739-4746. PubMed ID: 32582881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunability of photoluminescence of InAS/GaAs quantum dots by growth pause introduced ripening.
    Halder N; Chakrabarti S; Stanley CR
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6232-7. PubMed ID: 19205188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots.
    Li MF; Yu Y; He JF; Wang LJ; Zhu Y; Shang XJ; Ni HQ; Niu ZC
    Nanoscale Res Lett; 2013 Feb; 8(1):86. PubMed ID: 23414094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of self-assembled InAs/GaAs(001) quantum dots grown by growth-interrupted molecular beam epitaxy.
    Balzarotti A
    Nanotechnology; 2008 Dec; 19(50):505701. PubMed ID: 19942778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of InAsN quantum dots by transmission electron microscopy and photoluminescence.
    Hsu CC; Hsu RQ; Wu YH; Chi TW; Chiang CH; Chen JF; Chang MN
    Ultramicroscopy; 2008 Oct; 108(11):1495-9. PubMed ID: 18768262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography.
    Martín-Sánchez J; Alonso-González P; Herranz J; González Y; González L
    Nanotechnology; 2009 Mar; 20(12):125302. PubMed ID: 19420463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Stage Formation of Two-Dimensional Photonic Crystal and Spatially Ordered Arrays of Self-Assembled Ge(Si) Nanoislandson Pit-Patterned Silicon-On-Insulator Substrate.
    Novikov AV; Smagina ZV; Stepikhova MV; Zinovyev VA; Rudin SA; Dyakov SA; Rodyakina EE; Nenashev AV; Sergeev SM; Peretokin AV; Dvurechenskii AV
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics.
    Wen L; Gao F; Zhang S; Li G
    Small; 2016 Aug; 12(31):4277-85. PubMed ID: 27348495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of 3D self-directed quantum dot ordering in multilayer InGaAs/GaAs nanostructures by means of flux gas composition.
    Lytvyn PM; Mazur YI; Marega E; Dorogan VG; Kladko VP; Slobodian MV; Strelchuk VV; Hussein ML; Ware ME; Salamo GJ
    Nanotechnology; 2008 Dec; 19(50):505605. PubMed ID: 19942777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation sequence of InAs quantum dots on cross-hatch patterns.
    Kanjanachuchai S; Limwongse T
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10787-91. PubMed ID: 22408996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.
    Guimard D; Ishida M; Bordel D; Li L; Nishioka M; Tanaka Y; Ekawa M; Sudo H; Yamamoto T; Kondo H; Sugawara M; Arakawa Y
    Nanotechnology; 2010 Mar; 21(10):105604. PubMed ID: 20160334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures.
    Bortoleto JR; Zelcovit JG; Gutiérrez HR; Bettini J; Cotta MA
    Nanotechnology; 2008 Jan; 19(1):015601. PubMed ID: 21730536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and optical properties of single- and multi-layer InAs quantum dots.
    Hsu CC; Hsu RQ; Wu YH
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S149-54. PubMed ID: 20576720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral Ordering of InAs Quantum Dots on Cross-hatch Patterned GaInP.
    Hakkarainen T; Schramm A; Tukiainen A; Ahorinta R; Toikkanen L; Guina M
    Nanoscale Res Lett; 2010 Aug; 5(12):1892-6. PubMed ID: 21170401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots.
    Reyes DF; González D; Ulloa JM; Sales DL; Dominguez L; Mayoral A; Hierro A
    Nanoscale Res Lett; 2012 Nov; 7(1):653. PubMed ID: 23181950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General route for the decomposition of InAs quantum dots during the capping process.
    González D; Reyes DF; Utrilla AD; Ben T; Braza V; Guzman A; Hierro A; Ulloa JM
    Nanotechnology; 2016 Mar; 27(12):125703. PubMed ID: 26891164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-controlled self-assembled InAs quantum dots grown on GaAs substrates.
    Lin SY; Tseng CC; Chung TH; Liao WH; Chen SH; Chyi JI
    Nanotechnology; 2010 Jul; 21(29):295304. PubMed ID: 20601753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin effects in InAs self-assembled quantum dots.
    Dos Santos EC; Gobato YG; Brasil MJ; Taylor DA; Henini M
    Nanoscale Res Lett; 2011 Feb; 6(1):115. PubMed ID: 21711647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of the interplay between InAs quantum dots and wetting layer during the GaAs capping process.
    González D; Braza V; Utrilla AD; Gonzalo A; Reyes DF; Ben T; Guzman A; Hierro A; Ulloa JM
    Nanotechnology; 2017 Oct; 28(42):425702. PubMed ID: 28770809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.