These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28211934)

  • 1. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS
    Faghaninia A; Yu G; Aydemir U; Wood M; Chen W; Rignanese GM; Snyder GJ; Hautier G; Jain A
    Phys Chem Chem Phys; 2017 Mar; 19(9):6743-6756. PubMed ID: 28211934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bournonite PbCuSbS3 : Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity.
    Dong Y; Khabibullin AR; Wei K; Salvador JR; Nolas GS; Woods LM
    Chemphyschem; 2015 Oct; 16(15):3264-70. PubMed ID: 26330172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compositional Effects and Electron Lone-pair Distortions in Doped Bournonites.
    Khabibullin AR; Wei K; Huan TD; Nolas GS; Woods LM
    Chemphyschem; 2018 Oct; 19(20):2635-2644. PubMed ID: 30059598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution Deposition of a Bournonite CuPbSbS
    Koskela KM; Melot BC; Brutchey RL
    J Am Chem Soc; 2020 Apr; 142(13):6173-6179. PubMed ID: 32160454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Precursor Route to Bournonite (CuPbSbS
    Alharbi YT; Alam F; Parvez K; Missous M; Lewis DJ
    Inorg Chem; 2021 Sep; 60(17):13691-13698. PubMed ID: 34382790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency Improvement of Bournonite CuPbSbS
    Zhang M; Liu Y; Yang B; Lin X; Lu Y; Zheng J; Chen C; Tang J
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13273-13280. PubMed ID: 33721988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pb7Bi4Se13: a lillianite homologue with promising thermoelectric properties.
    Olvera A; Shi G; Djieutedjeu H; Page A; Uher C; Kioupakis E; Poudeu PF
    Inorg Chem; 2015 Feb; 54(3):746-55. PubMed ID: 25089857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of high thermoelectric performance in RECuZnP
    Pöhls JH; Chanakian S; Park J; Ganose AM; Dunn A; Friesen N; Bhattacharya A; Hogan B; Bux S; Jain A; Mar A; Zevalkink A
    Mater Horiz; 2021 Jan; 8(1):209-215. PubMed ID: 34821299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elemental distribution and thermoelectric properties of layered tellurides 39R-M(0.067)Sb(0.667)Te(0.266) (M=Ge, Sn).
    Schneider MN; Fahrnbauer F; Rosenthal T; Döblinger M; Stiewe C; Oeckler O
    Chemistry; 2012 Jan; 18(4):1209-18. PubMed ID: 22213207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric Properties of Doped-Cu
    García G; Palacios P; Cabot A; Wahnón P
    Inorg Chem; 2018 Jun; 57(12):7321-7333. PubMed ID: 29851475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First principles study of defect formation in thermoelectric zinc antimonide, β-Zn4Sb3.
    Faghaninia A; Lo CS
    J Phys Condens Matter; 2015 Apr; 27(12):125502. PubMed ID: 25757075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Isovalent Substitution on the Electronic Structure and Thermoelectric Properties of the Solid Solution α-As
    Vaney JB; Delaizir G; Wiendlocha B; Tobola J; Alleno E; Piarristeguy A; Gonçalves AP; Gendarme C; Malaman B; Dauscher A; Candolfi C; Lenoir B
    Inorg Chem; 2017 Feb; 56(4):2248-2257. PubMed ID: 28177618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires.
    Wang C; Wang Y; Zhang G; Peng C; Yang G
    Phys Chem Chem Phys; 2014 Feb; 16(8):3771-6. PubMed ID: 24430004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties.
    Farahi N; VanZant M; Zhao J; Tse JS; Prabhudev S; Botton GA; Salvador JR; Borondics F; Liu Z; Kleinke H
    Dalton Trans; 2014 Oct; 43(40):14983-91. PubMed ID: 25005794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High thermoelectric performance from optimization of hole-doped CuInTe2.
    Zhou G; Wang D
    Phys Chem Chem Phys; 2016 Feb; 18(8):5925-31. PubMed ID: 26593866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cubic Crystal Structure Formation and Optical Properties within the Ag-B
    McKeown Wessler GC; Wang T; Blum V; Mitzi DB
    Inorg Chem; 2022 Feb; 61(6):2929-2944. PubMed ID: 35107292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type VIII Si based clathrates: prospects for a giant thermoelectric power factor.
    Norouzzadeh P; Krasinski JS; Myles CW; Vashaee D
    Phys Chem Chem Phys; 2015 Apr; 17(14):8850-9. PubMed ID: 25744661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new thermoelectric material: CsBi4Te6.
    Chung DY; Hogan TP; Rocci-Lane M; Brazis P; Ireland JR; Kannewurf CR; Bastea M; Uher C; Kanatzidis MG
    J Am Chem Soc; 2004 May; 126(20):6414-28. PubMed ID: 15149239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Study on Doping of SnSe2 Monolayers.
    Huang Y; Zhou D; Chen X; Liu H; Wang C; Wang S
    Chemphyschem; 2016 Feb; 17(3):375-9. PubMed ID: 26645138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.