These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 28212402)
1. graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture. Chung D; Kim HJ; Zhao H PLoS Comput Biol; 2017 Feb; 13(2):e1005388. PubMed ID: 28212402 [TBL] [Abstract][Full Text] [Related]
2. Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA. Kim HJ; Yu Z; Lawson A; Zhao H; Chung D Bioinformatics; 2018 Jun; 34(12):2139-2141. PubMed ID: 29432514 [TBL] [Abstract][Full Text] [Related]
3. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. Chung D; Yang C; Li C; Gelernter J; Zhao H PLoS Genet; 2014 Nov; 10(11):e1004787. PubMed ID: 25393678 [TBL] [Abstract][Full Text] [Related]
4. GPA-MDS: A Visualization Approach to Investigate Genetic Architecture among Phenotypes Using GWAS Results. Wei W; Ramos PS; Hunt KJ; Wolf BJ; Hardiman G; Chung D Int J Genomics; 2016; 2016():6589843. PubMed ID: 27868058 [TBL] [Abstract][Full Text] [Related]
5. ShinyGPA: An interactive visualization toolkit for investigating pleiotropic architecture using GWAS datasets. Kortemeier E; Ramos PS; Hunt KJ; Kim HJ; Hardiman G; Chung D PLoS One; 2018; 13(1):e0190949. PubMed ID: 29309429 [TBL] [Abstract][Full Text] [Related]
6. LPG: A four-group probabilistic approach to leveraging pleiotropy in genome-wide association studies. Yang Y; Dai M; Huang J; Lin X; Yang C; Chen M; Liu J BMC Genomics; 2018 Jun; 19(1):503. PubMed ID: 29954342 [TBL] [Abstract][Full Text] [Related]
7. multi-GPA-Tree: Statistical approach for pleiotropy informed and functional annotation tree guided prioritization of GWAS results. Khatiwada A; Yilmaz AS; Wolf BJ; Pietrzak M; Chung D PLoS Comput Biol; 2023 Dec; 19(12):e1011686. PubMed ID: 38060592 [TBL] [Abstract][Full Text] [Related]
8. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data. Masotti M; Guo B; Wu B Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400 [TBL] [Abstract][Full Text] [Related]
9. graph-GPA 2.0: improving multi-disease genetic analysis with integration of functional annotation data. Deng Q; Gupta A; Jeon H; Nam JH; Yilmaz AS; Chang W; Pietrzak M; Li L; Kim HJ; Chung D Front Genet; 2023; 14():1079198. PubMed ID: 37501720 [TBL] [Abstract][Full Text] [Related]
10. GPA-Tree: statistical approach for functional-annotation-tree-guided prioritization of GWAS results. Khatiwada A; Wolf BJ; Yilmaz AS; Ramos PS; Pietrzak M; Lawson A; Hunt KJ; Kim HJ; Chung D Bioinformatics; 2022 Jan; 38(4):1067-1074. PubMed ID: 34849578 [TBL] [Abstract][Full Text] [Related]
11. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501 [TBL] [Abstract][Full Text] [Related]
12. A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data. Wang P; Rahman M; Jin L; Xiong M BMC Genomics; 2016 Nov; 17(1):881. PubMed ID: 27821073 [TBL] [Abstract][Full Text] [Related]
13. LSMM: a statistical approach to integrating functional annotations with genome-wide association studies. Ming J; Dai M; Cai M; Wan X; Liu J; Yang C Bioinformatics; 2018 Aug; 34(16):2788-2796. PubMed ID: 29608640 [TBL] [Abstract][Full Text] [Related]
14. Joint analysis of individual-level and summary-level GWAS data by leveraging pleiotropy. Dai M; Wan X; Peng H; Wang Y; Liu Y; Liu J; Xu Z; Yang C Bioinformatics; 2019 May; 35(10):1729-1736. PubMed ID: 30307540 [TBL] [Abstract][Full Text] [Related]
15. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. Tamba CL; Ni YL; Zhang YM PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824 [TBL] [Abstract][Full Text] [Related]
16. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits. Huh I; Kwon MS; Park T PLoS One; 2015; 10(9):e0138700. PubMed ID: 26406920 [TBL] [Abstract][Full Text] [Related]
17. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics. Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509 [TBL] [Abstract][Full Text] [Related]
18. Backward genotype-transcript-phenotype association mapping. Lee S; Wang H; Xing EP Methods; 2017 Oct; 129():18-23. PubMed ID: 28917724 [TBL] [Abstract][Full Text] [Related]
19. LLR: a latent low-rank approach to colocalizing genetic risk variants in multiple GWAS. Liu J; Wan X; Wang C; Yang C; Zhou X; Yang C Bioinformatics; 2017 Dec; 33(24):3878-3886. PubMed ID: 28961754 [TBL] [Abstract][Full Text] [Related]
20. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]