These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 28212406)
1. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406 [TBL] [Abstract][Full Text] [Related]
2. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [TBL] [Abstract][Full Text] [Related]
3. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. Kim HJ; Silva JE; Vu HS; Mockaitis K; Nam JW; Cahoon EB J Exp Bot; 2015 Jul; 66(14):4251-65. PubMed ID: 25969557 [TBL] [Abstract][Full Text] [Related]
4. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610 [TBL] [Abstract][Full Text] [Related]
5. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847 [TBL] [Abstract][Full Text] [Related]
6. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Snapp AR; Kang J; Qi X; Lu C Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Iven T; Hornung E; Heilmann M; Feussner I Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558 [TBL] [Abstract][Full Text] [Related]
8. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Bansal S; Durrett TP Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412 [TBL] [Abstract][Full Text] [Related]
9. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII). Liu Q; Wu M; Zhang B; Shrestha P; Petrie J; Green AG; Singh SP Plant Biotechnol J; 2017 Jan; 15(1):132-143. PubMed ID: 27381745 [TBL] [Abstract][Full Text] [Related]
10. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases. Kalinger RS; Williams D; Ahmadi Pirshahid A; Pulsifer IP; Rowland O Lipids; 2021 May; 56(3):327-344. PubMed ID: 33547664 [TBL] [Abstract][Full Text] [Related]
11. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. Liu J; Rice A; McGlew K; Shaw V; Park H; Clemente T; Pollard M; Ohlrogge J; Durrett TP Plant Biotechnol J; 2015 Aug; 13(6):858-65. PubMed ID: 25756355 [TBL] [Abstract][Full Text] [Related]
13. Interactions between genetics and environment shape Camelina seed oil composition. Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104 [TBL] [Abstract][Full Text] [Related]
14. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa. Sarvas C; Puttick D; Forseille L; Cram D; Smith MA Planta; 2021 Jul; 254(2):32. PubMed ID: 34287699 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina. Li M; Wei F; Tawfall A; Tang M; Saettele A; Wang X Plant Biotechnol J; 2015 Aug; 13(6):766-78. PubMed ID: 25557877 [TBL] [Abstract][Full Text] [Related]
16. Proteome rebalancing in transgenic Camelina occurs within the enlarged proteome induced by β-carotene accumulation and storage protein suppression. Schmidt MA; Pendarvis K Transgenic Res; 2017 Apr; 26(2):171-186. PubMed ID: 27771868 [TBL] [Abstract][Full Text] [Related]
17. Expression of a Lychee Yu XH; Cai Y; Chai J; Schwender J; Shanklin J Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096 [TBL] [Abstract][Full Text] [Related]
18. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition. Rodríguez-Rodríguez MF; Salas JJ; Garcés R; Martínez-Force E Phytochemistry; 2014 Nov; 107():7-15. PubMed ID: 25212866 [TBL] [Abstract][Full Text] [Related]
19. Improved fatty acid profiles in seeds of Camelina sativa by artificial microRNA mediated FATB gene suppression. Ozseyhan ME; Li P; Na G; Li Z; Wang C; Lu C Biochem Biophys Res Commun; 2018 Sep; 503(2):621-624. PubMed ID: 29906463 [TBL] [Abstract][Full Text] [Related]
20. In Silico Analysis of Fatty Acid Desaturases Structures in Raboanatahiry N; Yin Y; Chen K; He J; Yu L; Li M Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]