These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 28212406)

  • 21. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.
    Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP
    Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids.
    Bansal S; Kim HJ; Na G; Hamilton ME; Cahoon EB; Lu C; Durrett TP
    J Exp Bot; 2018 Aug; 69(18):4395-4402. PubMed ID: 29982623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.
    Kim HJ; Silva JE; Iskandarov U; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB
    Plant J; 2015 Dec; 84(5):1021-33. PubMed ID: 26505880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation.
    Lu C; Kang J
    Plant Cell Rep; 2008 Feb; 27(2):273-8. PubMed ID: 17899095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa.
    Usher S; Han L; Haslam RP; Michaelson LV; Sturtevant D; Aziz M; Chapman KD; Sayanova O; Napier JA
    Sci Rep; 2017 Jul; 7(1):6570. PubMed ID: 28747792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa.
    Ozseyhan ME; Kang J; Mu X; Lu C
    Plant Physiol Biochem; 2018 Feb; 123():1-7. PubMed ID: 29216494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G; Mu X; Grabowski P; Schmutz J; Lu C
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil.
    Marmon S; Sturtevant D; Herrfurth C; Chapman K; Stymne S; Feussner I
    Plant Physiol; 2017 Apr; 173(4):2081-2095. PubMed ID: 28235891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous Expression of
    Liu Y; Han J; Li Z; Jiang Z; Luo L; Zhang Y; Chen M; Yang Y; Liu Z
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds.
    Abdullah HM; Pang N; Chilcoat B; Shachar-Hill Y; Schnell DJ; Dhankher OP
    Plant Physiol Biochem; 2024 Mar; 208():108470. PubMed ID: 38422576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae.
    Claver A; de la Vega M; Rey-Giménez R; Luján MÁ; Picorel R; López MV; Alfonso M
    Plant Mol Biol; 2020 Oct; 104(3):283-296. PubMed ID: 32740897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailoring the composition of novel wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering.
    Ruiz-Lopez N; Broughton R; Usher S; Salas JJ; Haslam RP; Napier JA; Beaudoin F
    Plant Biotechnol J; 2017 Jul; 15(7):837-849. PubMed ID: 27990737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in
    Lee KR; Yeo Y; Lee J; Kim S; Im C; Kim I; Lee J; Lee SK; Suh MC; Kim HU
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil.
    Pidkowich MS; Nguyen HT; Heilmann I; Ischebeck T; Shanklin J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4742-7. PubMed ID: 17360594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.
    Park W; Feng Y; Kim H; Suh MC; Ahn SJ
    Plant Cell Rep; 2015 Sep; 34(9):1489-98. PubMed ID: 25972262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa.
    Lyzenga WJ; Harrington M; Bekkaoui D; Wigness M; Hegedus DD; Rozwadowski KL
    BMC Plant Biol; 2019 Jul; 19(1):292. PubMed ID: 31272394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa.
    Roy Choudhury S; Riesselman AJ; Pandey S
    Plant Biotechnol J; 2014 Jan; 12(1):49-59. PubMed ID: 24102738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing.
    Jiang WZ; Henry IM; Lynagh PG; Comai L; Cahoon EB; Weeks DP
    Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles.
    Horn PJ; Silva JE; Anderson D; Fuchs J; Borisjuk L; Nazarenus TJ; Shulaev V; Cahoon EB; Chapman KD
    Plant J; 2013 Oct; 76(1):138-50. PubMed ID: 23808562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of a high-activity diacylglycerol acetyltransferase results in enhanced synthesis of acetyl-TAG in camelina seed oil.
    Alkotami L; Kornacki C; Campbell S; McIntosh G; Wilson C; Tran TNT; Durrett TP
    Plant J; 2021 May; 106(4):953-964. PubMed ID: 33619818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.