These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 28212406)
41. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds. Bhattacharya S; Sinha S; Das N; Maiti MK Plant Physiol Biochem; 2015 Nov; 96():345-55. PubMed ID: 26351151 [TBL] [Abstract][Full Text] [Related]
42. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712 [TBL] [Abstract][Full Text] [Related]
43. An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds. Ruiz-Lopez N; Haslam RP; Usher S; Napier JA; Sayanova O Plant Biotechnol J; 2015 Dec; 13(9):1264-75. PubMed ID: 25640865 [TBL] [Abstract][Full Text] [Related]
44. Production of mono- and sesquiterpenes in Camelina sativa oilseed. Augustin JM; Higashi Y; Feng X; Kutchan TM Planta; 2015 Sep; 242(3):693-708. PubMed ID: 26223979 [TBL] [Abstract][Full Text] [Related]
45. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds. Malik MR; Yang W; Patterson N; Tang J; Wellinghoff RL; Preuss ML; Burkitt C; Sharma N; Ji Y; Jez JM; Peoples OP; Jaworski JG; Cahoon EB; Snell KD Plant Biotechnol J; 2015 Jun; 13(5):675-88. PubMed ID: 25418911 [TBL] [Abstract][Full Text] [Related]
46. Engineering erucic acid biosynthesis in camelina (Camelina sativa) via FAE1 gene cloning and antisense technology. Bashiri H; Kahrizi D; Salmanian AH; Rahnama H; Azadi P Cell Mol Biol (Noisy-le-grand); 2024 Jul; 70(7):243-251. PubMed ID: 39097867 [TBL] [Abstract][Full Text] [Related]
47. Green Chemistry Production of Codlemone, the Sex Pheromone of the Codling Moth (Cydia pomonella), by Metabolic Engineering of the Oilseed Crop Camelina (Camelina sativa). Xia YH; Wang HL; Ding BJ; Svensson GP; Jarl-Sunesson C; Cahoon EB; Hofvander P; Löfstedt C J Chem Ecol; 2021 Dec; 47(12):950-967. PubMed ID: 34762210 [TBL] [Abstract][Full Text] [Related]
48. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Borghi M; Xie DY Planta; 2016 Feb; 243(2):549-61. PubMed ID: 26530959 [TBL] [Abstract][Full Text] [Related]
49. Comparison of the structures of triacylglycerols from native and transgenic medium-chain fatty acid-enriched rape seed oil by liquid chromatography--atmospheric pressure chemical ionization ion-trap mass spectrometry (LC-APCI-ITMS). Beermann C; Winterling N; Green A; Möbius M; Schmitt JJ; Boehm G Lipids; 2007 Apr; 42(4):383-94. PubMed ID: 17406932 [TBL] [Abstract][Full Text] [Related]
50. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diets based on red clover silage. Halmemies-Beauchet-Filleau A; Kokkonen T; Lampi AM; Toivonen V; Shingfield KJ; Vanhatalo A J Dairy Sci; 2011 Sep; 94(9):4413-30. PubMed ID: 21854915 [TBL] [Abstract][Full Text] [Related]
51. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Guo Y; Mietkiewska E; Francis T; Katavic V; Brost JM; Giblin M; Barton DL; Taylor DC Plant Mol Biol; 2009 Mar; 69(5):565-75. PubMed ID: 19082744 [TBL] [Abstract][Full Text] [Related]
52. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil. Bengtsson JD; Wallis JG; Bai S; Browse J Plant Biotechnol J; 2023 Mar; 21(3):497-505. PubMed ID: 36382992 [TBL] [Abstract][Full Text] [Related]
53. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Zou J; Katavic V; Giblin EM; Barton DL; MacKenzie SL; Keller WA; Hu X; Taylor DC Plant Cell; 1997 Jun; 9(6):909-23. PubMed ID: 9212466 [TBL] [Abstract][Full Text] [Related]
54. Metabolic Engineering a Model Oilseed Yuan L; Li R Front Plant Sci; 2020; 11():11. PubMed ID: 32117362 [No Abstract] [Full Text] [Related]
55. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Kang J; Snapp AR; Lu C Plant Physiol Biochem; 2011 Feb; 49(2):223-9. PubMed ID: 21215650 [TBL] [Abstract][Full Text] [Related]
56. Class A lysophosphatidic acid acyltransferase 2 from Camelina sativa promotes very long-chain fatty acids accumulation in phospholipid and triacylglycerol. Yin Y; Raboanatahiry N; Chen K; Chen X; Tian T; Jia J; He H; He J; Guo Z; Yu L; Li M Plant J; 2022 Dec; 112(5):1141-1158. PubMed ID: 36209492 [TBL] [Abstract][Full Text] [Related]
57. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Moreno-Pérez AJ; Venegas-Calerón M; Vaistij FE; Salas JJ; Larson TR; Garcés R; Graham IA; Martínez-Force E Planta; 2012 Mar; 235(3):629-39. PubMed ID: 22002626 [TBL] [Abstract][Full Text] [Related]
58. Phosphate deficiency modifies lipid composition and seed oil production in camelina. Li J; Su Y; Shapiro CA; Schachtman DP; Wang X Plant Sci; 2023 May; 330():111636. PubMed ID: 36791961 [TBL] [Abstract][Full Text] [Related]
59. Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa. Aznar-Moreno JA; Durrett TP Plant Cell Physiol; 2017 Jul; 58(7):1260-1267. PubMed ID: 28444368 [TBL] [Abstract][Full Text] [Related]
60. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. Yang W; Wang G; Li J; Bates PD; Wang X; Allen DK Plant Physiol; 2017 May; 174(1):110-123. PubMed ID: 28325849 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]