BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 28212794)

  • 21. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids.
    Cui Z; Mureev S; Polinkovsky ME; Tnimov Z; Guo Z; Durek T; Jones A; Alexandrov K
    ACS Synth Biol; 2017 Mar; 6(3):535-544. PubMed ID: 27966891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli.
    Ryu Y; Schultz PG
    Nat Methods; 2006 Apr; 3(4):263-5. PubMed ID: 16554830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.
    Gan R; Perez JG; Carlson ED; Ntai I; Isaacs FJ; Kelleher NL; Jewett MC
    Biotechnol Bioeng; 2017 May; 114(5):1074-1086. PubMed ID: 27987323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase.
    Xiao H; Peters FB; Yang PY; Reed S; Chittuluru JR; Schultz PG
    ACS Chem Biol; 2014 May; 9(5):1092-6. PubMed ID: 24506189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement.
    Smolskaya S; Andreev YA
    Biomolecules; 2019 Jun; 9(7):. PubMed ID: 31261745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporation of Unnatural Amino Acids in Response to the AGG Codon.
    Lee BS; Shin S; Jeon JY; Jang KS; Lee BY; Choi S; Yoo TH
    ACS Chem Biol; 2015 Jul; 10(7):1648-53. PubMed ID: 25946114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
    Maranhao AC; Ellington AD
    ACS Synth Biol; 2017 Jan; 6(1):108-119. PubMed ID: 27600875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and Inexpensive Evaluation of Nonstandard Amino Acid Incorporation in Escherichia coli.
    Monk JW; Leonard SP; Brown CW; Hammerling MJ; Mortensen C; Gutierrez AE; Shin NY; Watkins E; Mishler DM; Barrick JE
    ACS Synth Biol; 2017 Jan; 6(1):45-54. PubMed ID: 27648665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An expanding genetic code.
    Xie J; Schultz PG
    Methods; 2005 Jul; 36(3):227-38. PubMed ID: 16076448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells.
    Serfling R; Coin I
    Methods Enzymol; 2016; 580():89-107. PubMed ID: 27586329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System.
    Worst EG; Exner MP; De Simone A; Schenkelberger M; Noireaux V; Budisa N; Ott A
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27500416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system.
    Chemla Y; Ozer E; Schlesinger O; Noireaux V; Alfonta L
    Biotechnol Bioeng; 2015 Aug; 112(8):1663-72. PubMed ID: 25753985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.
    Owens AE; Grasso KT; Ziegler CA; Fasan R
    Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adding new chemistries to the genetic code.
    Liu CC; Schultz PG
    Annu Rev Biochem; 2010; 79():413-44. PubMed ID: 20307192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation of non-canonical amino acids into proteins in yeast.
    Wiltschi B
    Fungal Genet Biol; 2016 Apr; 89():137-156. PubMed ID: 26868890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reprogramming Initiator and Nonsense Codons to Simultaneously Install Three Distinct Noncanonical Amino Acids into Proteins in E. coli.
    Jiang HK; Tharp JM
    Methods Mol Biol; 2023; 2676():101-116. PubMed ID: 37277627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimisation of a system for the co-translational incorporation of a keto amino acid and its application to a tumour-specific Anticalin.
    Reichert AJ; Poxleitner G; Dauner M; Skerra A
    Protein Eng Des Sel; 2015 Dec; 28(12):553-65. PubMed ID: 26405058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system.
    Kiga D; Sakamoto K; Kodama K; Kigawa T; Matsuda T; Yabuki T; Shirouzu M; Harada Y; Nakayama H; Takio K; Hasegawa Y; Endo Y; Hirao I; Yokoyama S
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9715-20. PubMed ID: 12097643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.