BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28212815)

  • 1. Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae.
    Deaner M; Alper HS
    Metab Eng; 2017 Mar; 40():14-22. PubMed ID: 28212815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
    Latimer LN; Dueber JE
    Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae.
    Swinnen S; Ho PW; Klein M; Nevoigt E
    Metab Eng; 2016 Jul; 36():68-79. PubMed ID: 26971668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.
    Deaner M; Mejia J; Alper HS
    ACS Synth Biol; 2017 Oct; 6(10):1931-1943. PubMed ID: 28700213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in Saccharomyces cerevisiae.
    Deaner M; Holzman A; Alper HS
    Biotechnol J; 2018 Sep; 13(9):e1700582. PubMed ID: 29663663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.
    Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H
    Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system.
    Lian J; HamediRad M; Hu S; Zhao H
    Nat Commun; 2017 Nov; 8(1):1688. PubMed ID: 29167442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production.
    Blazeck J; Miller J; Pan A; Gengler J; Holden C; Jamoussi M; Alper HS
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8155-64. PubMed ID: 24997118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
    Suástegui M; Guo W; Feng X; Shao Z
    Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae.
    Xu H; Kim S; Sorek H; Lee Y; Jeong D; Kim J; Oh EJ; Yun EJ; Wemmer DE; Kim KH; Kim SR; Jin YS
    Metab Eng; 2016 Mar; 34():88-96. PubMed ID: 26724864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PhiReX 2.0: A Programmable and Red Light-Regulated CRISPR-dCas9 System for the Activation of Endogenous Genes in
    Machens F; Ran G; Ruehmkorff C; Meyer Auf der Heyde J; Mueller-Roeber B; Hochrein L
    ACS Synth Biol; 2023 Apr; 12(4):1046-1057. PubMed ID: 37014634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2487-98. PubMed ID: 26671616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae.
    Hou J; Jiao C; Peng B; Shen Y; Bao X
    Metab Eng; 2016 Nov; 38():241-250. PubMed ID: 27497973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway.
    Wang Y; Tao F; Xin B; Liu H; Gao Y; Zhou NY; Xu P
    Metab Eng; 2017 Jan; 39():90-101. PubMed ID: 27815192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.