These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28212945)

  • 1. Sex differences in interval timing and attention to time in C57Bl/6J mice.
    Buhusi M; Bartlett MJ; Buhusi CV
    Behav Brain Res; 2017 May; 324():96-99. PubMed ID: 28212945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-sharing in rats: effect of distracter intensity and discriminability.
    Buhusi CV
    J Exp Psychol Anim Behav Process; 2012 Jan; 38(1):30-9. PubMed ID: 22122061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interval timing with gaps and distracters: evaluation of the ambiguity, switch, and time-sharing hypotheses.
    Buhusi CV; Meck WH
    J Exp Psychol Anim Behav Process; 2006 Jul; 32(3):329-38. PubMed ID: 16834500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time sharing in rats: A peak-interval procedure with gaps and distracters.
    Buhusi CV; Meck WH
    Behav Processes; 2006 Feb; 71(2-3):107-15. PubMed ID: 16413701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory for timing visual and auditory signals in albino and pigmented rats.
    Buhusi CV; Perera D; Meck WH
    J Exp Psychol Anim Behav Process; 2005 Jan; 31(1):18-30. PubMed ID: 15656724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual complexity, rather than valence or arousal accounts for distracter-induced overproductions of temporal durations.
    Folta-Schoofs K; Wolf OT; Treue S; Schoofs D
    Acta Psychol (Amst); 2014 Mar; 147():51-9. PubMed ID: 24161200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of distracter preexposure on the reset of an internal clock.
    Buhusi CV; Matthews AR
    Behav Processes; 2014 Jan; 101():72-80. PubMed ID: 24056240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing in pigeons: effects of the similarity between intertrial interval and gap in a timing signal.
    Kaiser DH; Zentall TR; Neiman E
    J Exp Psychol Anim Behav Process; 2002 Oct; 28(4):416-22. PubMed ID: 12395499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing, memory for intervals, and memory for untimed stimuli: the role of instructional ambiguity.
    Zentall TR
    Behav Processes; 2005 Nov; 70(3):209-22. PubMed ID: 16095851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mPFC catecholamines modulate attentional capture by appetitive distracters and attention to time in a peak-interval procedure in rats.
    Buhusi CV; Matthews AR; Buhusi M
    Behav Neurosci; 2022 Oct; 136(5):418-429. PubMed ID: 35834191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of Catecholamine Reuptake in the Prelimbic Cortex Decreases Top-down Attentional Control in Response to Novel, but Not Familiar Appetitive Distracters, within a Timing Paradigm.
    Matthews AR; Buhusi M; Buhusi CV
    NeuroSci; 2020 Dec; 1(2):99-114. PubMed ID: 35036990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase resetting and its implications for interval timing with intruders.
    Oprisan SA; Dix S; Buhusi CV
    Behav Processes; 2014 Jan; 101():146-53. PubMed ID: 24113026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of complexity of visual distracters on attention and information processing speed reflected in auditory p300.
    Wilson MJ; Harkrider AW; King KA
    Ear Hear; 2012; 33(4):480-8. PubMed ID: 22343547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of the role of the prelimbic cortex in interval timing and resource allocation: beneficial effect of norepinephrine and dopamine reuptake inhibitor nomifensine on anxiety-inducing distraction.
    Matthews AR; He OH; Buhusi M; Buhusi CV
    Front Integr Neurosci; 2012; 6():111. PubMed ID: 23227004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar attention and performance in female and male CD1 mice in the peak procedure.
    Eudave-Patiño M; Alcalá E; Dos Santos CV; Buriticá J
    Behav Processes; 2021 Aug; 189():104443. PubMed ID: 34139283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expectancy in humans in multisecond peak-interval timing with gaps.
    Fortin C; Fairhurst S; Malapani C; Morin C; Towey J; Meck WH
    Atten Percept Psychophys; 2009 May; 71(4):789-802. PubMed ID: 19429959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing is affected by demands in memory search but not by task switching.
    Fortin C; Schweickert R; Gaudreault R; Viau-Quesnel C
    J Exp Psychol Hum Percept Perform; 2010 Jun; 36(3):580-95. PubMed ID: 20515190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range.
    Hinton SC; Meck WH
    Brain Res Cogn Brain Res; 2004 Oct; 21(2):171-82. PubMed ID: 15464349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using adaptive psychophysics to identify the neural network reset time in subsecond interval timing.
    Sadibolova R; Sun S; Terhune DB
    Exp Brain Res; 2021 Dec; 239(12):3565-3572. PubMed ID: 34581840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interval timing with gaps: gap ambiguity as an alternative to temporal decay.
    Zentall TR; Kaiser DH
    J Exp Psychol Anim Behav Process; 2005 Oct; 31(4):484-6. PubMed ID: 16248734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.