These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28213279)

  • 21. In vivo RNA labeling using MS2.
    Peña E; Heinlein M; Sambade A
    Methods Mol Biol; 2015; 1217():329-41. PubMed ID: 25287213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin motion is constrained by association with nuclear compartments in human cells.
    Chubb JR; Boyle S; Perry P; Bickmore WA
    Curr Biol; 2002 Mar; 12(6):439-45. PubMed ID: 11909528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin loops and causality loops: the influence of RNA upon spatial nuclear architecture.
    Sawyer IA; Dundr M
    Chromosoma; 2017 Oct; 126(5):541-557. PubMed ID: 28593374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging of genomic loci in Trypanosoma brucei using an optimised LacO-LacI system.
    Budzak J; Goodwin I; Tiengwe C; Rudenko G
    Mol Biochem Parasitol; 2023 Dec; 256():111598. PubMed ID: 37923299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alanine scanning of MS2 coat protein reveals protein-phosphate contacts involved in thermodynamic hot spots.
    Hobson D; Uhlenbeck OC
    J Mol Biol; 2006 Feb; 356(3):613-24. PubMed ID: 16380130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions.
    Horn WT; Convery MA; Stonehouse NJ; Adams CJ; Liljas L; Phillips SE; Stockley PG
    RNA; 2004 Nov; 10(11):1776-82. PubMed ID: 15496523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation.
    Chaumeil J; Augui S; Chow JC; Heard E
    Methods Mol Biol; 2008; 463():297-308. PubMed ID: 18951174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters.
    Cremer M; Schmid VJ; Kraus F; Markaki Y; Hellmann I; Maiser A; Leonhardt H; John S; Stamatoyannopoulos J; Cremer T
    Epigenetics Chromatin; 2017 Aug; 10(1):39. PubMed ID: 28784182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modifying the specificity of an RNA backbone contact.
    Dertinger D; Dale T; Uhlenbeck OC
    J Mol Biol; 2001 Dec; 314(4):649-54. PubMed ID: 11733985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coding RNAs with a non-coding function: maintenance of open chromatin structure.
    Caudron-Herger M; Müller-Ott K; Mallm JP; Marth C; Schmidt U; Fejes-Tóth K; Rippe K
    Nucleus; 2011; 2(5):410-24. PubMed ID: 21983088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of phage MS2 coat protein mutants expressed from a reconstituted phagemid reveals that proline 78 is essential for viral infectivity.
    Hill HR; Stonehouse NJ; Fonseca SA; Stockley PG
    J Mol Biol; 1997 Feb; 266(1):1-7. PubMed ID: 9054964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping.
    Zhang Y; McEwen AE; Crothers DM; Levene SD
    PLoS One; 2006 Dec; 1(1):e136. PubMed ID: 17205140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping.
    Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT
    J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nuclear speckles: molecular organization, biological function and role in disease.
    Galganski L; Urbanek MO; Krzyzosiak WJ
    Nucleic Acids Res; 2017 Oct; 45(18):10350-10368. PubMed ID: 28977640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleation of nuclear bodies.
    Dundr M
    Methods Mol Biol; 2013; 1042():351-64. PubMed ID: 23980018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single molecule study of non-specific binding kinetics of LacI in mammalian cells.
    Caccianini L; Normanno D; Izeddin I; Dahan M
    Faraday Discuss; 2015; 184():393-400. PubMed ID: 26387491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exchange of the basic domain of human immunodeficiency virus type 1 Rev for a polyarginine stretch expands the RNA binding specificity, and a minimal arginine cluster is required for optimal RRE RNA binding affinity, nuclear accumulation, and trans-activation.
    Nam YS; Petrovic A; Jeong KS; Venkatesan S
    J Virol; 2001 Mar; 75(6):2957-71. PubMed ID: 11222721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon.
    Abo T; Inada T; Ogawa K; Aiba H
    EMBO J; 2000 Jul; 19(14):3762-9. PubMed ID: 10899129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing transcription factor dynamics at the single-molecule level in a living cell.
    Elf J; Li GW; Xie XS
    Science; 2007 May; 316(5828):1191-4. PubMed ID: 17525339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single plane illumination microscopy as a tool for studying nucleome dynamics.
    Langowski J
    Methods; 2017 Jul; 123():3-10. PubMed ID: 28648678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.