These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28213543)

  • 1. Functional Characterization of a 28-Kilobase Catabolic Island from Pseudomonas sp. Strain M1 Involved in Biotransformation of β-Myrcene and Related Plant-Derived Volatiles.
    Soares-Castro P; Montenegro-Silva P; Heipieper HJ; Santos PM
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28213543
    [No Abstract]   [Full Text] [Related]  

  • 2. Deciphering the genome repertoire of Pseudomonas sp. M1 toward β-myrcene biotransformation.
    Soares-Castro P; Santos PM
    Genome Biol Evol; 2014 Dec; 7(1):1-17. PubMed ID: 25503374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere.
    Soares-Castro P; Soares F; Reis F; Lino-Neto T; Santos PM
    Appl Microbiol Biotechnol; 2023 Aug; 107(16):5209-5224. PubMed ID: 37405434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and sequencing of beta-myrcene catabolism genes from Pseudomonas sp. strain M1.
    Iurescia S; Marconi AM; Tofani D; Gambacorta A; Paternò A; Devirgiliis C; van der Werf MJ; Zennaro E
    Appl Environ Microbiol; 1999 Jul; 65(7):2871-6. PubMed ID: 10388678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to beta-myrcene catabolism in Pseudomonas sp. M1: an expression proteomics analysis.
    Santos PM; Sá-Correia I
    Proteomics; 2009 Nov; 9(22):5101-11. PubMed ID: 19798672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen.
    Petasch J; Disch EM; Markert S; Becher D; Schweder T; Hüttel B; Reinhardt R; Harder J
    BMC Microbiol; 2014 Jun; 14():164. PubMed ID: 24952578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Advances in the Bacterial Toolbox for the Biotechnological Production of Monoterpene-Based Aroma Compounds.
    Soares-Castro P; Soares F; Santos PM
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33379215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1.
    Santos PM; Sá-Correia I
    J Biotechnol; 2007 Sep; 131(4):371-8. PubMed ID: 17826858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of monoterpene biotransformation in two pseudomonads.
    Bicas JL; Fontanille P; Pastore GM; Larroche C
    J Appl Microbiol; 2008 Dec; 105(6):1991-2001. PubMed ID: 19120646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans.
    Lüddeke F; Dikfidan A; Harder J
    BMC Microbiol; 2012 Sep; 12():192. PubMed ID: 22947208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of beta-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants.
    Thompson ML; Marriott R; Dowle A; Grogan G
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):721-30. PubMed ID: 19707757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in
    Shettigar M; Balotra S; Kasprzak A; Pearce SL; Lacey MJ; Taylor MC; Liu JW; Cahill D; Oakeshott JG; Pandey G
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32198167
    [No Abstract]   [Full Text] [Related]  

  • 13. Biotransformation of acyclic monoterpenoids by Debaryomyces sp., Kluyveromyces sp., and Pichia sp. strains of environmental origin.
    Ponzoni C; Gasparetti C; Goretti M; Turchetti B; Pagnoni UM; Cramarossa MR; Forti L; Buzzini P
    Chem Biodivers; 2008 Mar; 5(3):471-83. PubMed ID: 18357555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel, genetically encoded whole-cell biosensor for directed evolution of myrcene synthase in Escherichia coli.
    Chen C; Liu J; Yao G; Bao S; Wan X; Wang F; Wang K; Song T; Han P; Liu T; Jiang H
    Biosens Bioelectron; 2023 May; 228():115176. PubMed ID: 36913884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoterpene biotransformation by Colletotrichum species.
    Sales A; Afonso LF; Americo JA; de Freitas Rebelo M; Pastore GM; Bicas JL
    Biotechnol Lett; 2018 Mar; 40(3):561-567. PubMed ID: 29288353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic characterization of caffeine degradation by bacteria and its potential applications.
    Summers RM; Mohanty SK; Gopishetty S; Subramanian M
    Microb Biotechnol; 2015 May; 8(3):369-78. PubMed ID: 25678373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial monoterpene transformations-a review.
    Marmulla R; Harder J
    Front Microbiol; 2014; 5():346. PubMed ID: 25076942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terpenoids biotransformation in mammals III: Biotransformation of alpha-pinene, beta-pinene, pinane, 3-carene, carane, myrcene, and p-cymene in rabbits.
    Ishida T; Asakawa Y; Takemoto T; Aratani T
    J Pharm Sci; 1981 Apr; 70(4):406-15. PubMed ID: 7229954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the Gene Responsible for Lignin-Derived Low-Molecular-Weight Compound Catabolism in
    Hirose J; Tsukimata R; Miyatake M; Yokoi H
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33260964
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.