These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 28213706)

  • 1. Plant-microbial association in petroleum and gas exploration sites in the state of Assam, north-east India-significance for bioremediation.
    Sarma H; Islam NF; Prasad MN
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8744-8758. PubMed ID: 28213706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds ─ a microcosmic study.
    Sarma H; Sonowal S; Prasad MNV
    Ecotoxicol Environ Saf; 2019 Jul; 176():288-299. PubMed ID: 30947032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil exploration activities: assessment of hazardous impacts on 'Golden silk' cultivation.
    Devi G; Devi A; Bhattacharyya KG
    Environ Monit Assess; 2017 Feb; 189(2):62. PubMed ID: 28102496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil].
    Arias-Trinidad A; Rivera-Cruz MC; Roldán-Garrigós A; Aceves-Navarro LA; Quintero-Lizaola R; Hernández-Guzmán J
    Rev Biol Trop; 2017 Mar; 65(1):21-30. PubMed ID: 29465955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baseline study of water, soil, and identification of potential native phytoremediators of total petroleum hydrocarbon from oil-contaminated areas in the vicinity of Geleky oilfield of Assam.
    Sarma N; Goswami M; Rabha S; Patowary R; Devi A
    Environ Monit Assess; 2023 Jun; 195(7):831. PubMed ID: 37296255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution.
    Li Q; You P; Hu Q; Leng B; Wang J; Chen J; Wan S; Wang B; Yuan C; Zhou R; Ouyang K
    Ecotoxicol Environ Saf; 2020 Nov; 204():111083. PubMed ID: 32791359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation.
    Yenn R; Borah M; Boruah HP; Roy AS; Baruah R; Saikia N; Sahu OP; Tamuli AK
    Int J Phytoremediation; 2014; 16(7-12):909-25. PubMed ID: 24933892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indigenous plant species in the steppe zone of the southern Volga Uplands.
    Panchenko L; Muratova A; Dubrovskaya E; Golubev S; Turkovskaya O
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3260-3274. PubMed ID: 29147987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of wetland/upland vegetation communities and evaluation of soil-plant contamination by polycyclic aromatic hydrocarbons and trace metals in regions near oil sands mining in Alberta.
    Boutin C; Carpenter DJ
    Sci Total Environ; 2017 Jan; 576():829-839. PubMed ID: 27816881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.
    Wu M; Li W; Dick WA; Ye X; Chen K; Kost D; Chen L
    Chemosphere; 2017 Feb; 169():124-130. PubMed ID: 27870933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil.
    Asemoloye MD; Ahmad R; Jonathan SG
    Chemosphere; 2017 Nov; 187():1-10. PubMed ID: 28787637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of bioremediation potential of petroleum-contaminated soils from the shanbei oilfield of China revealed by qPCR and high throughput sequencing.
    Wu M; Liu Z; Gao H; Gao J; Xu Y; Ou Y
    Chemosphere; 2022 Dec; 308(Pt 3):136446. PubMed ID: 36113659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil.
    Fatima K; Imran A; Amin I; Khan QM; Afzal M
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6188-96. PubMed ID: 26606932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: Implications to bioremediation.
    Thavamani P; Megharaj M; Krishnamurti GS; McFarland R; Naidu R
    Environ Int; 2011 Jan; 37(1):184-9. PubMed ID: 20875686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migration, speciation and distribution of heavy metals in an oil-polluted soil affected by crude oil extraction processes.
    Fu X; Cui Z; Zang G
    Environ Sci Process Impacts; 2014 Jul; 16(7):1737-44. PubMed ID: 24824116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing degradation of total petroleum hydrocarbons and uptake of heavy metals in a wetland microcosm planted with Phragmites communis by humic acids addition.
    Sung K; Kim KS; Park S
    Int J Phytoremediation; 2013; 15(6):536-49. PubMed ID: 23819295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil.
    Fatima K; Afzal M; Imran A; Khan QM
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):314-20. PubMed ID: 25661008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils.
    Khudur LS; Gleeson DB; Ryan MH; Shahsavari E; Haleyur N; Nugegoda D; Ball AS
    Environ Pollut; 2018 Dec; 243(Pt A):94-102. PubMed ID: 30172128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].
    Jiao HH; Cui BJ; Wu SH; Bai ZH; Huang ZB
    Huan Jing Ke Xue; 2015 Sep; 36(9):3471-8. PubMed ID: 26717712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.