These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 28213709)
41. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Zhou L; Liu J; Liu Z J Hazard Mater; 2009 Dec; 172(1):439-46. PubMed ID: 19646814 [TBL] [Abstract][Full Text] [Related]
42. Porous Aluminum-Based Metal-Organic Framework-Aminoclay Nanocomposite: Sustainable Synthesis and Ultrahigh Sorption of Cephalosporin Antibiotics. Imanipoor J; Mohammadi M Langmuir; 2022 May; 38(18):5900-5914. PubMed ID: 35470668 [TBL] [Abstract][Full Text] [Related]
43. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Cho HH; Huang H; Schwab K Langmuir; 2011 Nov; 27(21):12960-7. PubMed ID: 21913654 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of hierarchical hollow MIL-53(Al)-NH Huang L; Yang Z; Li X; Hou L; Alhassan SI; Wang H Environ Sci Pollut Res Int; 2021 Feb; 28(6):6886-6897. PubMed ID: 33010011 [TBL] [Abstract][Full Text] [Related]
45. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite. Zhang Y; Li Q; Sun L; Tang R; Zhai J J Hazard Mater; 2010 Mar; 175(1-3):404-9. PubMed ID: 19896766 [TBL] [Abstract][Full Text] [Related]
46. Synthesis of mesoporous-structured MIL-68(Al)/MCM-41-NH Hua T; Li D; Li X; Lin J; Niu J; Cheng J; Zhou X; Hu Y Environ Res; 2022 Dec; 215(Pt 3):114433. PubMed ID: 36167114 [TBL] [Abstract][Full Text] [Related]
47. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon. Lee KJ; Miyawaki J; Shiratori N; Yoon SH; Jang J J Hazard Mater; 2013 Sep; 260():82-8. PubMed ID: 23747466 [TBL] [Abstract][Full Text] [Related]
48. Ionic liquid assisted electrospun cellulose acetate fibers for aqueous removal of triclosan. Zhang G; Sun M; Liu Y; Liu H; Qu J; Li J Langmuir; 2015 Feb; 31(5):1820-7. PubMed ID: 25595432 [TBL] [Abstract][Full Text] [Related]
49. Adsorption removal of ibuprofen and naproxen from aqueous solution with Cu-doped Mil-101(Fe). Xiong P; Zhang H; Li G; Liao C; Jiang G Sci Total Environ; 2021 Nov; 797():149179. PubMed ID: 34311351 [TBL] [Abstract][Full Text] [Related]
50. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. Mangrulkar PA; Kamble SP; Meshram J; Rayalu SS J Hazard Mater; 2008 Dec; 160(2-3):414-21. PubMed ID: 18524474 [TBL] [Abstract][Full Text] [Related]
51. A metal-OH group modification strategy to prepare highly-hydrophobic MIL-53-Al for efficient acetone capture under humid conditions. Shi J; Han R; Lu S; Liu Q J Environ Sci (China); 2021 Sep; 107():111-123. PubMed ID: 34412774 [TBL] [Abstract][Full Text] [Related]
52. Enhancing the water stability of Al-MIL-101-NH2 via postsynthetic modification. Wittmann T; Siegel R; Reimer N; Milius W; Stock N; Senker J Chemistry; 2015 Jan; 21(1):314-23. PubMed ID: 25352494 [TBL] [Abstract][Full Text] [Related]
53. Hydrothermal Conversion of Triclosan-The Role of Activated Carbon as Sorbent and Reactant. Weiner B; Sühnholz S; Kopinke FD Environ Sci Technol; 2017 Feb; 51(3):1649-1653. PubMed ID: 28005344 [TBL] [Abstract][Full Text] [Related]
54. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. Chen J; Qu R; Pan X; Wang Z Water Res; 2016 Oct; 103():215-223. PubMed ID: 27459151 [TBL] [Abstract][Full Text] [Related]
55. Simultaneous adsorption and degradation of triclosan by Ginkgo biloba L. stabilized Fe/Co bimetallic nanoparticles. Gao JF; Wu ZL; Duan WJ; Zhang WZ Sci Total Environ; 2019 Apr; 662():978-989. PubMed ID: 30795484 [TBL] [Abstract][Full Text] [Related]
56. Stevia residue as new precursor of CO Yokoyama JTC; Cazetta AL; Bedin KC; Spessato L; Fonseca JM; Carraro PS; Ronix A; Silva MC; Silva TL; Almeida VC Ecotoxicol Environ Saf; 2019 May; 172():403-410. PubMed ID: 30735972 [TBL] [Abstract][Full Text] [Related]
57. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. Behera SK; Oh SY; Park HS J Hazard Mater; 2010 Jul; 179(1-3):684-91. PubMed ID: 20381242 [TBL] [Abstract][Full Text] [Related]
58. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities. Seo PW; Bhadra BN; Ahmed I; Khan NA; Jhung SH Sci Rep; 2016 Oct; 6():34462. PubMed ID: 27695005 [TBL] [Abstract][Full Text] [Related]
59. Adsorption studies of tetracycline hydrochloride and diclofenac sodium on NH Dai K; Chen L; Aryee AA; Yang P; Han R; Qu L Int J Biol Macromol; 2024 Jun; 271(Pt 1):132637. PubMed ID: 38795565 [TBL] [Abstract][Full Text] [Related]
60. Effective triclosan removal by using porous aromatic frameworks in continuous fixed-bed column studies. Li Y; Gong F; Yang W; Liu B Environ Sci Pollut Res Int; 2023 Dec; 30(57):121007-121013. PubMed ID: 37947929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]