BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28213944)

  • 1. Separation of hydroxynorketamine stereoisomers using capillary electrophoresis with sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin.
    Sandbaumhüter FA; Theurillat R; Thormann W
    Electrophoresis; 2017 Aug; 38(15):1878-1885. PubMed ID: 28213944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microassay for ketamine and metabolites in plasma and serum based on enantioselective capillary electrophoresis with highly sulfated γ-cyclodextrin and electrokinetic analyte injection.
    Theurillat R; Sandbaumhüter FA; Bettschart-Wolfensberger R; Thormann W
    Electrophoresis; 2016 May; 37(9):1129-38. PubMed ID: 26626946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. medetomidine comedication assessed by enantioselective capillary electrophoresis.
    Sandbaumhüter FA; Theurillat R; Bektas RN; Kutter APN; Bettschart-Wolfensberger R; Thormann W
    J Chromatogr A; 2016 Oct; 1467():436-444. PubMed ID: 27485149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CE provides evidence of the stereoselective hydroxylation of norketamine in equines.
    Schmitz A; Theurillat R; Lassahn PG; Mevissen M; Thormann W
    Electrophoresis; 2009 Aug; 30(16):2912-21. PubMed ID: 19653235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective analysis of ketamine and its metabolites in equine plasma and urine by CE with multiple isomer sulfated beta-CD.
    Theurillat R; Knobloch M; Schmitz A; Lassahn PG; Mevissen M; Thormann W
    Electrophoresis; 2007 Aug; 28(15):2748-57. PubMed ID: 17600844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the α
    Sandbaumhüter FA; Theurillat R; Bettschart-Wolfensberger R; Thormann W
    Electrophoresis; 2017 Aug; 38(15):1895-1904. PubMed ID: 28251651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective capillary electrophoresis provides insight into the phase II metabolism of ketamine and its metabolites in vivo and in vitro.
    Sandbaumhüter FA; Thormann W
    Electrophoresis; 2018 Jun; 39(12):1478-1481. PubMed ID: 29572863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective CE analysis of hepatic ketamine metabolism in different species in vitro.
    Schmitz A; Thormann W; Moessner L; Theurillat R; Helmja K; Mevissen M
    Electrophoresis; 2010 May; 31(9):1506-16. PubMed ID: 20358543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective capillary electrophoresis for the assessment of CYP3A4-mediated ketamine demethylation and inhibition in vitro.
    Kwan HY; Thormann W
    Electrophoresis; 2011 Oct; 32(19):2738-45. PubMed ID: 21983822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective CE-MS analysis of ketamine metabolites in urine.
    Sandbaumhüter FA; Aerts JT; Theurillat R; Andrén PE; Thormann W; Jansson ET
    Electrophoresis; 2023 Jan; 44(1-2):125-134. PubMed ID: 36398998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine in vitro.
    Portmann S; Kwan HY; Theurillat R; Schmitz A; Mevissen M; Thormann W
    J Chromatogr A; 2010 Dec; 1217(51):7942-8. PubMed ID: 20609441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective capillary electrophoresis for pharmacokinetic analysis of methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine in equines anesthetized with ketamine and isoflurane.
    Theurillat R; Sandbaumhüter FA; Gittel C; Larenza Menzies MP; Braun C; Thormann W
    Electrophoresis; 2019 Aug; 40(15):1959-1965. PubMed ID: 30900259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples.
    Hasan M; Hofstetter R; Fassauer GM; Link A; Siegmund W; Oswald S
    J Pharm Biomed Anal; 2017 May; 139():87-97. PubMed ID: 28279931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a method for analysis of ketamine and norketamine enantiomers in equine brain and cerebrospinal fluid by capillary electrophoresis.
    Theurillat R; Larenza MP; Feige K; Bettschart-Wolfensberger R; Thormann W
    Electrophoresis; 2014 Oct; 35(19):2863-9. PubMed ID: 24789372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental aspects of field-amplified electrokinetic injection of cations for enantioselective capillary electrophoresis with sulfated cyclodextrins as selectors.
    Šesták J; Theurillat R; Sandbaumhüter FA; Thormann W
    J Chromatogr A; 2018 Jul; 1558():85-95. PubMed ID: 29759647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the stereoselective biotransformation of ketamine to norketamine via determination of their enantiomers in equine plasma by capillary electrophoresis.
    Theurillat R; Knobloch M; Levionnois O; Larenza P; Mevissen M; Thormann W
    Electrophoresis; 2005 Oct; 26(20):3942-51. PubMed ID: 16167314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretically mediated microanalysis for characterization of the enantioselective CYP3A4 catalyzed N-demethylation of ketamine.
    Ying Kwan H; Thormann W
    Electrophoresis; 2012 Nov; 33(22):3299-305. PubMed ID: 22949220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral separation and determination of ketamine and norketamine in hair by capillary electrophoresis.
    Porpiglia N; Musile G; Bortolotti F; De Palo EF; Tagliaro F
    Forensic Sci Int; 2016 Sep; 266():304-310. PubMed ID: 27348468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of cytochrome P450 enzymes involved in ketamine metabolism by use of liver microsomes and specific cytochrome P450 enzymes from horses, dogs, and humans.
    Mössner LD; Schmitz A; Theurillat R; Thormann W; Mevissen M
    Am J Vet Res; 2011 Nov; 72(11):1505-13. PubMed ID: 22023129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors.
    Moaddel R; Abdrakhmanova G; Kozak J; Jozwiak K; Toll L; Jimenez L; Rosenberg A; Tran T; Xiao Y; Zarate CA; Wainer IW
    Eur J Pharmacol; 2013 Jan; 698(1-3):228-34. PubMed ID: 23183107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.