These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28213985)

  • 41. Theoretical analysis of dip-coating of uniformly wetting and chemically micropatterned surfaces with an Ellis fluid.
    Tiwari N
    Eur Phys J E Soft Matter; 2014 Dec; 37(12):123. PubMed ID: 25500947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.
    Hu B; Kieweg SL
    Comput Fluids; 2012 Jul; 64(15):83-90. PubMed ID: 23687391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes.
    Lunowa SB; Mascini A; Bringedal C; Bultreys T; Cnudde V; Pop IS
    Langmuir; 2022 Feb; 38(5):1680-1688. PubMed ID: 35077183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ionic liquids in confined geometries.
    Perkin S
    Phys Chem Chem Phys; 2012 Apr; 14(15):5052-62. PubMed ID: 22301770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of surface commensurability on the structure and relaxation dynamics of a confined monatomic fluid.
    Varadarajan V; Dasgupta C; Ayappa KG
    J Chem Phys; 2018 Aug; 149(6):064503. PubMed ID: 30111140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spreading dynamics and dynamic contact angle of non-Newtonian fluids.
    Wang XD; Lee DJ; Peng XF; Lai JY
    Langmuir; 2007 Jul; 23(15):8042-7. PubMed ID: 17590025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Capillary smectization and layering in a confined liquid crystal.
    de Las Heras D; Velasco E; Mederos L
    Phys Rev Lett; 2005 Jan; 94(1):017801. PubMed ID: 15698132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Capillary rise dynamics of aqueous glycerol solutions in glass capillaries: a critical examination of the Washburn equation.
    O'Loughlin M; Wilk K; Priest C; Ralston J; Popescu MN
    J Colloid Interface Sci; 2013 Dec; 411():257-64. PubMed ID: 24041546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rise of the main meniscus in rectangular capillaries: Experiments and modeling.
    Wu P; Zhang H; Nikolov A; Wasan D
    J Colloid Interface Sci; 2016 Jan; 461():195-202. PubMed ID: 26402778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulation of contact line dynamics in a two-dimensional capillary tube by the lattice Boltzmann model.
    Fan L; Fang H; Lin Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051603. PubMed ID: 11414912
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamics of nanoscale droplets on moving surfaces.
    Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM
    Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability analysis of a thermocapillary spreading film with slip-model.
    Tiwari N
    Eur Phys J E Soft Matter; 2014 Nov; 37(11):120. PubMed ID: 25428784
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A study on the behavior of water droplet confined between an atomic force microscope tip and rough surfaces.
    Ko JA; Choi HJ; Ha MY; Hong SD; Yoon HS
    Langmuir; 2010 Jun; 26(12):9728-35. PubMed ID: 20462264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic Contact Angle at the Nanoscale: A Unified View.
    Lukyanov AV; Likhtman AE
    ACS Nano; 2016 Jun; 10(6):6045-53. PubMed ID: 27276341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capillary rise of polydimethylsiloxane around a poly(ethylene terephthalate) fiber versus viscosity: Existence of a sharp transition in the dynamic wetting behavior.
    Zhang Y; Moins S; Coulembier O; Seveno D; De Coninck J
    J Colloid Interface Sci; 2019 Feb; 536():499-506. PubMed ID: 30384055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.