BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28213986)

  • 1. Investigation of the temperature dependence of water adsorption on silica-based stationary phases in hydrophilic interaction liquid chromatography.
    Bartó E; Felinger A; Jandera P
    J Chromatogr A; 2017 Mar; 1489():143-148. PubMed ID: 28213986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.
    Soukup J; Jandera P
    J Chromatogr A; 2014 Dec; 1374():102-111. PubMed ID: 25544246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of hydration process on silica hydride surfaces by microcalorimetry and water adsorption.
    Bocian S; Rychlicki G; Matyska M; Pesek J; Buszewski B
    J Colloid Interface Sci; 2014 Feb; 416():161-6. PubMed ID: 24370416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient elution in aqueous normal-phase liquid chromatography on hydrosilated silica-based stationary phases.
    Soukup J; Janás P; Jandera P
    J Chromatogr A; 2013 Apr; 1286():111-8. PubMed ID: 23497850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography.
    Gritti F; Pereira Ados S; Sandra P; Guiochon G
    J Chromatogr A; 2009 Nov; 1216(48):8496-504. PubMed ID: 19853257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.
    Borges EM
    J Chromatogr Sci; 2015 Apr; 53(4):580-97. PubMed ID: 25234386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode.
    Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S
    Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrosilated silica-based columns: the effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids.
    Soukup J; Jandera P
    J Chromatogr A; 2012 Mar; 1228():125-34. PubMed ID: 21782183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to bioanalysis: aqueous normal-phase chromatography with silica hydride stationary phases.
    Pesek JJ; Matyska MT
    Bioanalysis; 2012 Apr; 4(7):845-53. PubMed ID: 22512801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 2H nuclear magnetic resonance study of the state of water in neat silica and zwitterionic stationary phases and its influence on the chromatographic retention characteristics in hydrophilic interaction high-performance liquid chromatography.
    Wikberg E; Sparrman T; Viklund C; Jonsson T; Irgum K
    J Chromatogr A; 2011 Sep; 1218(38):6630-8. PubMed ID: 21855078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of aqueous organic mixtures on a chiral stationary phase with bound antibiotic eremomycin.
    Nikitina YK; Ali I; Asnin LD
    J Chromatogr A; 2014 Oct; 1363():71-8. PubMed ID: 25182859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents.
    Redón L; Subirats X; Rosés M
    J Chromatogr A; 2021 Oct; 1656():462543. PubMed ID: 34571282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases.
    Spicer V; Krokhin OV
    J Chromatogr A; 2018 Jan; 1534():75-84. PubMed ID: 29306631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds?
    McCalley DV
    J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica, Hybrid Silica, Hydride Silica and Non-Silica Stationary Phases for Liquid Chromatography. Part II: Chemical and Thermal Stability.
    Borges EM; Volmer DA
    J Chromatogr Sci; 2015 Aug; 53(7):1107-22. PubMed ID: 25609601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.
    Rathnasekara R; El Rassi Z
    J Chromatogr A; 2017 Jul; 1508():24-32. PubMed ID: 28599861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess isotherms as a new way for characterization of the columns for reversed-phase liquid chromatography.
    Buszewski B; Bocian S; Felinger A
    J Chromatogr A; 2008 May; 1191(1-2):72-7. PubMed ID: 18076889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.
    Qiao L; Shi X; Lu X; Xu G
    J Chromatogr A; 2015 May; 1396():62-71. PubMed ID: 25890438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of silica-based stationary phases for high-performance liquid chromatography.
    Qiu H; Liang X; Sun M; Jiang S
    Anal Bioanal Chem; 2011 Apr; 399(10):3307-22. PubMed ID: 21221544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.