These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28214241)

  • 1. Improvement of operational stability of Ogataea minuta carbonyl reductase for chiral alcohol production.
    Honda K; Inoue M; Ono T; Okano K; Dekishima Y; Kawabata H
    J Biosci Bioeng; 2017 Jun; 123(6):673-678. PubMed ID: 28214241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of engineered carbonyl reductase from Ogataea minuta in Rhodococcus opacus and its application to whole-cell bioconversion in anhydrous solvents.
    Honda K; Ono T; Okano K; Miyake R; Dekishima Y; Kawabata H
    J Biosci Bioeng; 2019 Feb; 127(2):145-149. PubMed ID: 30075940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Expanded Small Alkyl-Binding Pocket by Triple Point Mutations on Substrate Specificity of Thermoanaerobacter ethanolicus Secondary Alcohol Dehydrogenase.
    Dwamena A; Phillips R; Kim CS
    J Microbiol Biotechnol; 2019 Mar; 29(3):373-381. PubMed ID: 30609883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis.
    Jakoblinnert A; van den Wittenboer A; Shivange AV; Bocola M; Heffele L; Ansorge-Schumacher M; Schwaneberg U
    J Biotechnol; 2013 May; 165(1):52-62. PubMed ID: 23471075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency.
    Wang NQ; Sun J; Huang J; Wang P
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8591-601. PubMed ID: 24788330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols.
    Morikawa S; Nakai T; Yasohara Y; Nanba H; Kizaki N; Hasegawa J
    Biosci Biotechnol Biochem; 2005 Mar; 69(3):544-52. PubMed ID: 15784983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis.
    Li M; Zhang ZJ; Kong XD; Yu HL; Zhou J; Xu JH
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389544
    [No Abstract]   [Full Text] [Related]  

  • 8. Biosynthesis of optically pure chiral alcohols by a substrate coupled and biphasic system with a short-chain dehydrogenase from Streptomyces griseus.
    Tan Z; Ma H; Li Q; Pu L; Cao Y; Qu X; Zhu C; Ying H
    Enzyme Microb Technol; 2016 Nov; 93-94():191-199. PubMed ID: 27702481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of an aminoalcohol dehydrogenase for efficient production of double chiral aminoalcohols.
    Urano N; Fukui S; Kumashiro S; Ishige T; Kita S; Sakamoto K; Kataoka M; Shimizu S
    J Biosci Bioeng; 2011 Mar; 111(3):266-71. PubMed ID: 21163696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective synthesis of enantiopure chiral alcohols using carbonyl reductases screened from Yarrowia lipolytica.
    Zhang HL; Zhang C; Pei CH; Han MN; Li W
    J Appl Microbiol; 2019 Jan; 126(1):127-137. PubMed ID: 30291666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases.
    Escalettes F; Turner NJ
    Chembiochem; 2008 Apr; 9(6):857-60. PubMed ID: 18330849
    [No Abstract]   [Full Text] [Related]  

  • 12. Engineering of NADPH-dependent aldo-keto reductase from Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity.
    Asako H; Shimizu M; Itoh N
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):805-12. PubMed ID: 18626639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focused Directed Evolution of Aryl-Alcohol Oxidase in Saccharomyces cerevisiae by Using Chimeric Signal Peptides.
    Viña-Gonzalez J; Gonzalez-Perez D; Ferreira P; Martinez AT; Alcalde M
    Appl Environ Microbiol; 2015 Sep; 81(18):6451-62. PubMed ID: 26162870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1.
    Fukuda Y; Sakuraba H; Araki T; Ohshima T; Yoneda K
    Enzyme Microb Technol; 2016 Sep; 91():17-25. PubMed ID: 27444325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of stereoselectivity in evolved ketoreductases.
    Noey EL; Tibrewal N; Jiménez-Osés G; Osuna S; Park J; Bond CM; Cascio D; Liang J; Zhang X; Huisman GW; Tang Y; Houk KN
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):E7065-72. PubMed ID: 26644568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient synthesis of optically pure alcohols by asymmetric hydrogen-transfer biocatalysis: application of engineered enzymes in a 2-propanol-water medium.
    Itoh N; Isotani K; Nakamura M; Inoue K; Isogai Y; Makino Y
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1075-85. PubMed ID: 21739266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.
    Wei P; Gao JX; Zheng GW; Wu H; Zong MH; Lou WY
    J Biotechnol; 2016 Jul; 230():54-62. PubMed ID: 27211999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel bioreduction system for the production of chiral alcohols.
    Kataoka M; Kita K; Wada M; Yasohara Y; Hasegawa J; Shimizu S
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):437-45. PubMed ID: 12838375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stereoselectivity and catalytic properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate dehydrogenase are controlled by interactions between C-terminal arginine residues and the sulfonate of coenzyme M.
    Clark DD; Boyd JM; Ensign SA
    Biochemistry; 2004 Jun; 43(21):6763-71. PubMed ID: 15157110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly enantioselective mutant carbonyl reductases created via structure-based site-saturation mutagenesis.
    Li H; Yang Y; Zhu D; Hua L; Kantardjieff K
    J Org Chem; 2010 Nov; 75(22):7559-64. PubMed ID: 20964397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.