These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28214357)

  • 1. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.
    Vickruck JL; Richards MH
    Mol Ecol; 2017 May; 26(10):2674-2686. PubMed ID: 28214357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.
    López-Uribe MM; Morreale SJ; Santiago CK; Danforth BN
    PLoS One; 2015; 10(5):e0125719. PubMed ID: 25950429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic structure across urban and agricultural landscapes reveals evidence of resource specialization and philopatry in the Eastern carpenter bee,
    Ballare KM; Jha S
    Evol Appl; 2021 Jan; 14(1):136-149. PubMed ID: 33519961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nest architecture and genetic differentiation in a species complex of Australian stingless bees.
    Franck P; Cameron E; Good G; Rasplus JY; Oldroyd BP
    Mol Ecol; 2004 Aug; 13(8):2317-31. PubMed ID: 15245404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eastern Carpenter Bee (Hymenoptera: Apidae): Nest Structure, Nest Cell Provisions, and Trap Nest Acceptance in Rhode Island.
    Tucker SK; Ginsberg HS; Alm SR
    Environ Entomol; 2019 Jun; 48(3):702-710. PubMed ID: 30980666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-scale genetic structure and fire-created habitat patchiness in the Australian allodapine bee, Exoneura nigrescens (Hymenoptera: Apidae).
    Stow A; Silberbauer L; Beattie AJ; Briscoe DA
    J Hered; 2007; 98(1):60-6. PubMed ID: 17158467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species.
    Lozier JD; Strange JP; Stewart IJ; Cameron SA
    Mol Ecol; 2011 Dec; 20(23):4870-88. PubMed ID: 22035452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate, physiological tolerance and sex-biased dispersal shape genetic structure of Neotropical orchid bees.
    López-Uribe MM; Zamudio KR; Cardoso CF; Danforth BN
    Mol Ecol; 2014 Apr; 23(7):1874-90. PubMed ID: 24641728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae.
    Ulrich Y; Perrin N; Chapuisat M
    Mol Ecol; 2009 Apr; 18(8):1791-800. PubMed ID: 19302463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers.
    Francisco FO; Santiago LR; Mizusawa YM; Oldroyd BP; Arias MC
    Insect Sci; 2017 Oct; 24(5):877-890. PubMed ID: 27334308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.
    Santiago LR; Francisco FO; Jaffé R; Arias MC
    Genetica; 2016 Aug; 144(4):397-405. PubMed ID: 27305916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes.
    Herrmann F; Westphal C; Moritz RF; Steffan-Dewenter I
    Mol Ecol; 2007 Mar; 16(6):1167-78. PubMed ID: 17391404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting range expansion into ecological traps: climate-mediated shifts in sea turtle nesting beaches and human development.
    Pike DA
    Glob Chang Biol; 2013 Oct; 19(10):3082-92. PubMed ID: 23744698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation genetics, foraging distance and nest density of the scarce Great Yellow Bumblebee (Bombus distinguendus).
    Charman TG; Sears J; Green RE; Bourke AF
    Mol Ecol; 2010 Jul; 19(13):2661-74. PubMed ID: 20561194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A trait-based approach to predict population genetic structure in bees.
    López-Uribe MM; Jha S; Soro A
    Mol Ecol; 2019 Apr; 28(8):1919-1929. PubMed ID: 30667117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis.
    Davis ES; Murray TE; Fitzpatrick U; Brown MJ; Paxton RJ
    Mol Ecol; 2010 Nov; 19(22):4922-35. PubMed ID: 21040051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Past climate change and recent anthropogenic activities affect genetic structure and population demography of the greater long-tailed hamster in northern China.
    Ye J; Xiao Z; Li C; Wang F; Liao J; Fu J; Zhang Z
    Integr Zool; 2015 Sep; 10(5):482-96. PubMed ID: 26202859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees.
    Vickruck JL; Richards MH
    Behav Processes; 2017 Dec; 145():73-80. PubMed ID: 29031812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Nesting Characteristics on Health of Wild Bee Communities.
    Harmon-Threatt A
    Annu Rev Entomol; 2020 Jan; 65():39-56. PubMed ID: 31923377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Panmixia: an example from Dawson's burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini).
    Beveridge M; Simmons LW
    Mol Ecol; 2006 Apr; 15(4):951-7. PubMed ID: 16599959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.