BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28214443)

  • 1. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds.
    Norvill ZN; Toledo-Cervantes A; Blanco S; Shilton A; Guieysse B; Muñoz R
    Bioresour Technol; 2017 May; 232():35-43. PubMed ID: 28214443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds.
    Hom-Diaz A; Norvill ZN; Blánquez P; Vicent T; Guieysse B
    Chemosphere; 2017 Aug; 180():33-41. PubMed ID: 28391150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetracycline removal during wastewater treatment in high-rate algal ponds.
    de Godos I; Muñoz R; Guieysse B
    J Hazard Mater; 2012 Aug; 229-230():446-9. PubMed ID: 22727483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps.
    Norvill ZN; Shilton A; Guieysse B
    J Hazard Mater; 2016 Aug; 313():291-309. PubMed ID: 27135171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond.
    Van Den Hende S; Beelen V; Bore G; Boon N; Vervaeren H
    Bioresour Technol; 2014 May; 159():342-54. PubMed ID: 24662311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2014 Apr; 53():271-81. PubMed ID: 24530547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study.
    Matamoros V; Gutiérrez R; Ferrer I; García J; Bayona JM
    J Hazard Mater; 2015 May; 288():34-42. PubMed ID: 25682515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae and bacteria dynamics in high rate algal ponds based on modelling results: Long-term application of BIO_ALGAE model.
    Solimeno A; García J
    Sci Total Environ; 2019 Feb; 650(Pt 2):1818-1831. PubMed ID: 30286350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia.
    Buchanan N; Young P; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2018 Aug; 78(1-2):3-11. PubMed ID: 30101783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition.
    Park JB; Craggs RJ
    Water Sci Technol; 2010; 61(3):633-9. PubMed ID: 20150699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring resistomes and microbiomes in pilot-scale microalgae-bacteria wastewater treatment systems for use in low-resource settings.
    Ovis-Sánchez JO; Perera-Pérez VD; Buitrón G; Quintela-Baluja M; Graham DW; Morales-Espinosa R; Carrillo-Reyes J
    Sci Total Environ; 2023 Jul; 882():163545. PubMed ID: 37080313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.
    Derabe Maobe H; Onodera M; Takahashi M; Satoh H; Fukazawa T
    Water Sci Technol; 2014; 69(12):2519-25. PubMed ID: 24960016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region.
    Dahmani S; Zerrouki D; Ramanna L; Rawat I; Bux F
    Bioresour Technol; 2016 Nov; 219():749-752. PubMed ID: 27528269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater.
    Alcántara C; Muñoz R; Norvill Z; Plouviez M; Guieysse B
    Bioresour Technol; 2015 Feb; 177():110-7. PubMed ID: 25481561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of microalgae based technology for the removal of antibiotics from wastewater: A review.
    Leng L; Wei L; Xiong Q; Xu S; Li W; Lv S; Lu Q; Wan L; Wen Z; Zhou W
    Chemosphere; 2020 Jan; 238():124680. PubMed ID: 31545213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of a raceway pond system for wastewater treatment: a review.
    Rayen F; Behnam T; Dominique P
    Crit Rev Biotechnol; 2019 May; 39(3):422-435. PubMed ID: 30744439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Dec; 66():53-62. PubMed ID: 25189477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge.
    Lee SA; Lee N; Oh HM; Ahn CY
    J Microbiol Biotechnol; 2019 Sep; 29(9):1434-1443. PubMed ID: 31434363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.
    Santiago AF; Calijuri ML; Assemany PP; Calijuri Mdo C; dos Reis AJ
    Environ Technol; 2013; 34(13-16):1877-85. PubMed ID: 24350441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.