These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 28214579)
41. Cortical oscillatory activity and the induction of plasticity in the human motor cortex. McAllister SM; Rothwell JC; Ridding MC Eur J Neurosci; 2011 May; 33(10):1916-24. PubMed ID: 21488985 [TBL] [Abstract][Full Text] [Related]
42. Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. Rogasch NC; Dartnall TJ; Cirillo J; Nordstrom MA; Semmler JG J Appl Physiol (1985); 2009 Dec; 107(6):1874-83. PubMed ID: 19833810 [TBL] [Abstract][Full Text] [Related]
43. Reversal of long term potentiation-like plasticity in primary motor cortex in patients with progressive supranuclear palsy. Bologna M; Bertram K; Paparella G; Papi C; Belvisi D; Conte A; Suppa A; Williams DR; Berardelli A Clin Neurophysiol; 2017 Sep; 128(9):1547-1552. PubMed ID: 28704733 [TBL] [Abstract][Full Text] [Related]
44. Electrical stimulation during skill training with a therapeutic glove enhances the induction of cortical plasticity and has a positive effect on motor memory. Christova M; Rafolt D; Golaszewski S; Nardone R; Gallasch E Behav Brain Res; 2014 Aug; 270():171-8. PubMed ID: 24844752 [TBL] [Abstract][Full Text] [Related]
45. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. De Beaumont L; Tremblay S; Poirier J; Lassonde M; Théoret H Cereb Cortex; 2012 Jan; 22(1):112-21. PubMed ID: 21572090 [TBL] [Abstract][Full Text] [Related]
46. Physiology of modulation of motor cortex excitability by low-frequency suprathreshold repetitive transcranial magnetic stimulation. Heide G; Witte OW; Ziemann U Exp Brain Res; 2006 May; 171(1):26-34. PubMed ID: 16307247 [TBL] [Abstract][Full Text] [Related]
47. Optimal peripheral nerve stimulation intensity for paired associative stimulation with high-frequency peripheral component in healthy subjects. Pohjonen M; Nyman AL; Kirveskari E; Arokoski J; Shulga A Sci Rep; 2022 Jul; 12(1):12466. PubMed ID: 35864177 [TBL] [Abstract][Full Text] [Related]
48. Rapid motor cortical plasticity can be induced by motor imagery training. Yoxon E; Welsh TN Neuropsychologia; 2019 Nov; 134():107206. PubMed ID: 31563576 [TBL] [Abstract][Full Text] [Related]
49. Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex. Jung NH; Gleich B; Gattinger N; Hoess C; Haug C; Siebner HR; Mall V PLoS One; 2016; 11(12):e0168410. PubMed ID: 27977758 [TBL] [Abstract][Full Text] [Related]
50. Augmenting LTP-Like Plasticity in Human Motor Cortex by Spaced Paired Associative Stimulation. Müller-Dahlhaus F; Lücke C; Lu MK; Arai N; Fuhl A; Herrmann E; Ziemann U PLoS One; 2015; 10(6):e0131020. PubMed ID: 26110758 [TBL] [Abstract][Full Text] [Related]
51. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. Charlton CS; Ridding MC; Thompson PD; Miles TS J Neurol Sci; 2003 Apr; 208(1-2):79-85. PubMed ID: 12639729 [TBL] [Abstract][Full Text] [Related]
52. Corticomotor Excitability Effects of Peripheral Nerve Electrical Stimulation to the Paretic Arm in Stroke. Liu H; Au-Yeung SSY Am J Phys Med Rehabil; 2017 Oct; 96(10):687-693. PubMed ID: 28383292 [TBL] [Abstract][Full Text] [Related]
53. Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability. Ataoglu EE; Caglayan HB; Cengiz B Exp Brain Res; 2017 Sep; 235(9):2653-2659. PubMed ID: 28577024 [TBL] [Abstract][Full Text] [Related]
54. State-dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network. Arai N; Müller-Dahlhaus F; Murakami T; Bliem B; Lu MK; Ugawa Y; Ziemann U J Neurosci; 2011 Oct; 31(43):15376-83. PubMed ID: 22031883 [TBL] [Abstract][Full Text] [Related]
55. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks. Mouthon A; Ruffieux J; Wälchli M; Keller M; Taube W Neuroscience; 2015 Sep; 303():535-43. PubMed ID: 26192097 [TBL] [Abstract][Full Text] [Related]
56. Rapid plastic changes of human primary motor cortex with repetitive motor practice and transcranial magnetic stimulation. Hayashi S; Shimura K; Kasai T Percept Mot Skills; 2005 Oct; 101(2):575-86. PubMed ID: 16383095 [TBL] [Abstract][Full Text] [Related]
57. Motor cortical plasticity is impaired in Unverricht-Lundborg disease. Danner N; Säisänen L; Määttä S; Julkunen P; Hukkanen T; Könönen M; Hyppönen J; Kälviäinen R; Mervaala E Mov Disord; 2011 Sep; 26(11):2095-100. PubMed ID: 21661050 [TBL] [Abstract][Full Text] [Related]
58. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance. Opie GM; Evans A; Ridding MC; Semmler JG Neuroscience; 2016 Aug; 330():247-56. PubMed ID: 27282084 [TBL] [Abstract][Full Text] [Related]
59. Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes. Kumpulainen S; Avela J; Gruber M; Bergmann J; Voigt M; Linnamo V; Mrachacz-Kersting N Eur J Appl Physiol; 2015 May; 115(5):1107-15. PubMed ID: 25549788 [TBL] [Abstract][Full Text] [Related]
60. Rapid plasticity of motor corticospinal system with robotic reach training. Kantak SS; Jones-Lush LM; Narayanan P; Judkins TN; Wittenberg GF Neuroscience; 2013 Sep; 247():55-64. PubMed ID: 23669007 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]