These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 28214879)
1. Thiamine Deprivation Produces a Liver ATP Deficit and Metabolic and Genomic Effects in Mice: Findings Are Parallel to Those of Biotin Deficiency and Have Implications for Energy Disorders. Hernandez-Vazquez AJ; Garcia-Sanchez JA; Moreno-Arriola E; Salvador-Adriano A; Ortega-Cuellar D; Velazquez-Arellano A J Nutrigenet Nutrigenomics; 2016; 9(5-6):287-299. PubMed ID: 28214879 [TBL] [Abstract][Full Text] [Related]
2. Temporal development of genetic and metabolic effects of biotin deprivation. A search for the optimum time to study a vitamin deficiency. Hernández-Vázquez A; Ochoa-Ruiz E; Ibarra-González I; Ortega-Cuellar D; Salvador-Adriano A; Velázquez-Arellano A Mol Genet Metab; 2012 Nov; 107(3):345-51. PubMed ID: 23010431 [TBL] [Abstract][Full Text] [Related]
3. Biotinidase knockout mice show cellular energy deficit and altered carbon metabolism gene expression similar to that of nutritional biotin deprivation: clues for the pathogenesis in the human inherited disorder. Hernández-Vázquez A; Wolf B; Pindolia K; Ortega-Cuellar D; Hernández-González R; Heredia-Antúnez A; Ibarra-González I; Velázquez-Arellano A Mol Genet Metab; 2013 Nov; 110(3):248-54. PubMed ID: 24075304 [TBL] [Abstract][Full Text] [Related]
4. Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content. Liang X; Yee SW; Chien HC; Chen EC; Luo Q; Zou L; Piao M; Mifune A; Chen L; Calvert ME; King S; Norheim F; Abad J; Krauss RM; Giacomini KM PLoS Biol; 2018 Apr; 16(4):e2002907. PubMed ID: 29659562 [TBL] [Abstract][Full Text] [Related]
5. Insulin sensitivity is inversely related to cellular energy status, as revealed by biotin deprivation. Salvador-Adriano A; Vargas-Chávez S; Hernández-Vázquez Ade J; Ortega-Cuellar D; Tovar AR; Velázquez-Arellano A Am J Physiol Endocrinol Metab; 2014 Jun; 306(12):E1442-8. PubMed ID: 24801390 [TBL] [Abstract][Full Text] [Related]
6. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Liu TY; Shi CX; Gao R; Sun HJ; Xiong XQ; Ding L; Chen Q; Li YH; Wang JJ; Kang YM; Zhu GQ Clin Sci (Lond); 2015 Nov; 129(10):839-50. PubMed ID: 26201094 [TBL] [Abstract][Full Text] [Related]
7. Influence of tamoxifen on gluconeogenesis and glycolysis in the perfused rat liver. Marek CB; Peralta RM; Itinose AM; Bracht A Chem Biol Interact; 2011 Aug; 193(1):22-33. PubMed ID: 21570382 [TBL] [Abstract][Full Text] [Related]
8. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Chen Z; Zhong C Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509 [TBL] [Abstract][Full Text] [Related]
9. Normalization of prandial blood glucose and improvement of glucose tolerance by liver-specific inhibition of SH2 domain containing inositol phosphatase 2 (SHIP2) in diabetic KKAy mice: SHIP2 inhibition causes insulin-mimetic effects on glycogen metabolism, gluconeogenesis, and glycolysis. Grempler R; Zibrova D; Schoelch C; van Marle A; Rippmann JF; Redemann N Diabetes; 2007 Sep; 56(9):2235-41. PubMed ID: 17596404 [TBL] [Abstract][Full Text] [Related]
10. Brain mitochondrial metabolism in experimental thiamine deficiency. Parker WD; Haas R; Stumpf DA; Parks J; Eguren LA; Jackson C Neurology; 1984 Nov; 34(11):1477-81. PubMed ID: 6493495 [TBL] [Abstract][Full Text] [Related]
11. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pérez-Dueñas B; Serrano M; Rebollo M; Muchart J; Gargallo E; Dupuits C; Artuch R Pediatrics; 2013 May; 131(5):e1670-5. PubMed ID: 23589815 [TBL] [Abstract][Full Text] [Related]
12. Impaired energy metabolism of the taurine‑deficient heart. Schaffer SW; Shimada-Takaura K; Jong CJ; Ito T; Takahashi K Amino Acids; 2016 Feb; 48(2):549-58. PubMed ID: 26475290 [TBL] [Abstract][Full Text] [Related]
13. The metabolic effects of diuron in the rat liver. da Silva Simões M; Bracht L; Parizotto AV; Comar JF; Peralta RM; Bracht A Environ Toxicol Pharmacol; 2017 Sep; 54():53-61. PubMed ID: 28683350 [TBL] [Abstract][Full Text] [Related]
14. Elevated tissue omega-3 fatty acid status prevents age-related glucose intolerance in fat-1 transgenic mice. Romanatto T; Fiamoncini J; Wang B; Curi R; Kang JX Biochim Biophys Acta; 2014 Feb; 1842(2):186-91. PubMed ID: 24211484 [TBL] [Abstract][Full Text] [Related]
15. Thiamine deficiency and glyoxylic acid. Stewart CB; Grammer J; Brosemer RW Ann Nutr Metab; 1981; 25(5):289-98. PubMed ID: 7337422 [TBL] [Abstract][Full Text] [Related]
17. Biotin deprivation impairs mitochondrial structure and function and has implications for inherited metabolic disorders. Ochoa-Ruiz E; Díaz-Ruiz R; Hernández-Vázquez Ade J; Ibarra-González I; Ortiz-Plata A; Rembao D; Ortega-Cuéllar D; Viollet B; Uribe-Carvajal S; Corella JA; Velázquez-Arellano A Mol Genet Metab; 2015 Nov; 116(3):204-14. PubMed ID: 26343941 [TBL] [Abstract][Full Text] [Related]
18. Sodium-Glucose Cotransporter 2 Inhibitor and a Low Carbohydrate Diet Affect Gluconeogenesis and Glycogen Content Differently in the Kidney and the Liver of Non-Diabetic Mice. Atageldiyeva K; Fujita Y; Yanagimachi T; Mizumoto K; Takeda Y; Honjo J; Takiyama Y; Abiko A; Makino Y; Haneda M PLoS One; 2016; 11(6):e0157672. PubMed ID: 27327650 [TBL] [Abstract][Full Text] [Related]
19. Hepatic metabolism and transport in thiamine deficiency. Schenker S; Chen D; Speeg V; Walker CO; McCandless DW Am J Dig Dis; 1971 Mar; 16(3):255-64. PubMed ID: 5554505 [No Abstract] [Full Text] [Related]
20. Phosphoenolpyruvate prevents the decline in hepatic ATP and energy charge after ischemia and reperfusion injury in rats. Saiki S; Yamaguchi K; Chijiiwa K; Shimizu S; Hamasaki N; Tanaka M J Surg Res; 1997 Nov; 73(1):59-65. PubMed ID: 9441794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]