These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28215144)

  • 1. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Based Modeling of Drug Toxicity.
    Lu J; Lu D; Fu Z; Zheng M; Luo X
    Methods Mol Biol; 2018; 1754():247-264. PubMed ID: 29536448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method.
    Zhang H; Shen C; Liu RZ; Mao J; Liu CT; Mu B
    J Appl Toxicol; 2020 Sep; 40(9):1198-1209. PubMed ID: 32207182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Merging applicability domains for in silico assessment of chemical mutagenicity.
    Liu R; Wallqvist A
    J Chem Inf Model; 2014 Mar; 54(3):793-800. PubMed ID: 24494696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Nontoxic Substructures: A New Strategy to Avoid Potential Toxicity Risk.
    Yang H; Sun L; Li W; Liu G; Tang Y
    Toxicol Sci; 2018 Oct; 165(2):396-407. PubMed ID: 29893961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated decision support for assessing chemical liabilities.
    Spjuth O; Eklund M; Ahlberg Helgee E; Boyer S; Carlsson L
    J Chem Inf Model; 2011 Aug; 51(8):1840-7. PubMed ID: 21774475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve Bayes classifier method.
    Zhang H; Ma JX; Liu CT; Ren JX; Ding L
    Food Chem Toxicol; 2018 Nov; 121():593-603. PubMed ID: 30261216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxic Colors: The Use of Deep Learning for Predicting Toxicity of Compounds Merely from Their Graphic Images.
    Fernandez M; Ban F; Woo G; Hsing M; Yamazaki T; LeBlanc E; Rennie PS; Welch WJ; Cherkasov A
    J Chem Inf Model; 2018 Aug; 58(8):1533-1543. PubMed ID: 30063345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of novel prediction model for drug-induced mitochondrial toxicity by using naïve Bayes classifier method.
    Zhang H; Yu P; Ren JX; Li XB; Wang HL; Ding L; Kong WB
    Food Chem Toxicol; 2017 Dec; 110():122-129. PubMed ID: 29042293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.
    Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y
    Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehension of drug toxicity: software and databases.
    Toropov AA; Toropova AP; Raska I; Leszczynska D; Leszczynski J
    Comput Biol Med; 2014 Feb; 45():20-5. PubMed ID: 24480159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of chemical Ames mutagenicity.
    Xu C; Cheng F; Chen L; Du Z; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2012 Nov; 52(11):2840-7. PubMed ID: 23030379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.