These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 28215144)
21. In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach. Ding YL; Lyu YC; Leong MK Toxicol In Vitro; 2017 Apr; 40():102-114. PubMed ID: 28027902 [TBL] [Abstract][Full Text] [Related]
22. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction. Liu X; Feng H; Wu J; Xia K Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771 [TBL] [Abstract][Full Text] [Related]
23. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets. Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223 [TBL] [Abstract][Full Text] [Related]
24. Prediction of mutagenicity and carcinogenicity using in silico modelling: A case study of polychlorinated biphenyls. Vračko M; Bobst S SAR QSAR Environ Res; 2015; 26(7-9):667-82. PubMed ID: 26329919 [TBL] [Abstract][Full Text] [Related]
25. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Shi H; Tian S; Li Y; Li D; Yu H; Zhen X; Hou T Chem Res Toxicol; 2015 Jan; 28(1):116-25. PubMed ID: 25495542 [TBL] [Abstract][Full Text] [Related]
26. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity. Hemmerich J; Troger F; Füzi B; F Ecker G Mol Inform; 2020 May; 39(5):e2000005. PubMed ID: 32108997 [TBL] [Abstract][Full Text] [Related]
27. Development of an in silico prediction model for chemical-induced urinary tract toxicity by using naïve Bayes classifier. Zhang H; Ren JX; Ma JX; Ding L Mol Divers; 2019 May; 23(2):381-392. PubMed ID: 30294757 [TBL] [Abstract][Full Text] [Related]
28. VenomPred: A Machine Learning Based Platform for Molecular Toxicity Predictions. Galati S; Di Stefano M; Martinelli E; Macchia M; Martinelli A; Poli G; Tuccinardi T Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216217 [TBL] [Abstract][Full Text] [Related]
29. Estimation of elimination half-lives of organic chemicals in humans using gradient boosting machine. Lu J; Lu D; Zhang X; Bi Y; Cheng K; Zheng M; Luo X Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2664-71. PubMed ID: 27217074 [TBL] [Abstract][Full Text] [Related]
31. QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction. Hung C; Gini G Mol Divers; 2021 Aug; 25(3):1283-1299. PubMed ID: 34146224 [TBL] [Abstract][Full Text] [Related]
32. The current limits in virtual screening and property prediction. Hutter MC Future Med Chem; 2018 Jul; 10(13):1623-1635. PubMed ID: 29953247 [TBL] [Abstract][Full Text] [Related]
33. In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method. Lee JH; Basith S; Cui M; Kim B; Choi S SAR QSAR Environ Res; 2017 Oct; 28(10):863-874. PubMed ID: 29183231 [TBL] [Abstract][Full Text] [Related]
34. Applications of Machine Learning Methods in Drug Toxicity Prediction. Zhang L; Zhang H; Ai H; Hu H; Li S; Zhao J; Liu H Curr Top Med Chem; 2018; 18(12):987-997. PubMed ID: 30051792 [TBL] [Abstract][Full Text] [Related]
35. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related]
36. A review on machine learning methods for in silico toxicity prediction. Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866 [TBL] [Abstract][Full Text] [Related]
37. Ask the experts: computational chemistry. Matta CF; Hutter MC Future Med Chem; 2018 Jul; 10(13):1521-1524. PubMed ID: 29992825 [No Abstract] [Full Text] [Related]
38. Random forest prediction of mutagenicity from empirical physicochemical descriptors. Zhang QY; Aires-de-Sousa J J Chem Inf Model; 2007; 47(1):1-8. PubMed ID: 17238242 [TBL] [Abstract][Full Text] [Related]
39. Predicting Drug-Induced Liver Injury Using Ensemble Learning Methods and Molecular Fingerprints. Ai H; Chen W; Zhang L; Huang L; Yin Z; Hu H; Zhao Q; Zhao J; Liu H Toxicol Sci; 2018 Sep; 165(1):100-107. PubMed ID: 29788510 [TBL] [Abstract][Full Text] [Related]
40. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts. Chakravarti SK; Saiakhov RD; Klopman G J Chem Inf Model; 2012 Oct; 52(10):2609-18. PubMed ID: 22947043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]