BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28215331)

  • 1. A user's guide for characterizing plasma membrane subdomains in living cells by spot variation fluorescence correlation spectroscopy.
    Mailfert S; Hamon Y; Bertaux N; He HT; Marguet D
    Methods Cell Biol; 2017; 139():1-22. PubMed ID: 28215331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
    He HT; Marguet D
    Annu Rev Phys Chem; 2011; 62():417-36. PubMed ID: 21219145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the plasma membrane organization in living cells by spot variation fluorescence correlation spectroscopy.
    Billaudeau C; Mailfert S; Trombik T; Bertaux N; Rouger V; Hamon Y; He HT; Marguet D
    Methods Enzymol; 2013; 519():277-302. PubMed ID: 23280115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spot Variation Fluorescence Correlation Spectroscopy for Analysis of Molecular Diffusion at the Plasma Membrane of Living Cells.
    Mailfert S; Wojtowicz K; Brustlein S; Blaszczak E; Bertaux N; Łukaszewicz M; Marguet D; Trombik T
    J Vis Exp; 2020 Nov; (165):. PubMed ID: 33252108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.
    Kusumi A; Shirai YM; Koyama-Honda I; Suzuki KG; Fujiwara TK
    FEBS Lett; 2010 May; 584(9):1814-23. PubMed ID: 20178787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by Fluorescence Correlation Spectroscopy (FCS).
    Marquer C; Lévêque-Fort S; Potier MC
    J Vis Exp; 2012 Apr; (62):e3513. PubMed ID: 22508446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Lipid and Cell Membrane Organization by the Fluorescence Correlation Spectroscopy Diffusion Law.
    Ng XW; Bag N; Wohland T
    Chimia (Aarau); 2015; 69(3):112-9. PubMed ID: 26507213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.
    Regmi R; Winkler PM; Flauraud V; Borgman KJE; Manzo C; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    Nano Lett; 2017 Oct; 17(10):6295-6302. PubMed ID: 28926278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.
    Winkler PM; Regmi R; Flauraud V; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    J Phys Chem Lett; 2018 Jan; 9(1):110-119. PubMed ID: 29240442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.
    Wawrezinieck L; Rigneault H; Marguet D; Lenne PF
    Biophys J; 2005 Dec; 89(6):4029-42. PubMed ID: 16199500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes.
    Steinberger T; Macháň R; Hof M
    Methods Mol Biol; 2014; 1076():617-34. PubMed ID: 24108647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy.
    Kahya N; Scherfeld D; Bacia K; Schwille P
    J Struct Biol; 2004 Jul; 147(1):77-89. PubMed ID: 15109608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
    Manzo C; van Zanten TS; Garcia-Parajo MF
    Biophys J; 2011 Jan; 100(2):L8-10. PubMed ID: 21244822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopy approaches to investigate protein dynamics and lipid organization.
    Kwiatek JM; Hinde E; Gaus K
    Mol Membr Biol; 2014 Aug; 31(5):141-51. PubMed ID: 25046626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS.
    Jin W; Simsek MF; Pralle A
    Methods; 2018 May; 140-141():151-160. PubMed ID: 29530504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution optical microscopy of lipid plasma membrane dynamics.
    Eggeling C
    Essays Biochem; 2015; 57():69-80. PubMed ID: 25658345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy.
    Sankaran J; Manna M; Guo L; Kraut R; Wohland T
    Biophys J; 2009 Nov; 97(9):2630-9. PubMed ID: 19883607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles.
    García-Sáez AJ; Carrer DC; Schwille P
    Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
    Lenne PF; Wawrezinieck L; Conchonaud F; Wurtz O; Boned A; Guo XJ; Rigneault H; He HT; Marguet D
    EMBO J; 2006 Jul; 25(14):3245-56. PubMed ID: 16858413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying membrane binding and diffusion with fluorescence correlation spectroscopy diffusion laws.
    Mouttou A; Bremaud E; Noero J; Dibsy R; Arone C; Mak J; Muriaux D; Berry H; Favard C
    Biophys J; 2023 Jun; 122(11):2216-2229. PubMed ID: 36632034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.