BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28215340)

  • 1. Quantitative approaches for the study of microtubule aster motion in large eggs.
    Tanimoto H; Minc N
    Methods Cell Biol; 2017; 139():69-80. PubMed ID: 28215340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-motion relationships of centering microtubule asters.
    Tanimoto H; Kimura A; Minc N
    J Cell Biol; 2016 Mar; 212(7):777-87. PubMed ID: 27022090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs.
    Schatten G; Schatten H; Bestor TH; Balczon R
    J Cell Biol; 1982 Aug; 94(2):455-65. PubMed ID: 6125518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pushing Mechanism for Microtubule Aster Positioning in a Large Cell Type.
    Meaders JL; de Matos SN; Burgess DR
    Cell Rep; 2020 Oct; 33(1):108213. PubMed ID: 33027648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Spiral asters" and cytoplasmic rotation in sea urchin eggs: induction in Strongylocentrotus purpuratus eggs by elevated temperature.
    Schroeder TE; Battaglia DE
    J Cell Biol; 1985 Apr; 100(4):1056-62. PubMed ID: 3156865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the intracellular pH threshold for sperm aster formation in sea urchin eggs.
    Hamaguchi MS; Hamaguchi Y
    Dev Growth Differ; 2001 Aug; 43(4):447-58. PubMed ID: 11473551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of intact sperm asters from fertilized sea urchin eggs.
    Hinkley RE; Wright BD
    J Exp Zool; 1985 Mar; 233(3):473-7. PubMed ID: 4038734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrastructural study of cross-fertilization (Arbacia female x Mytilus male).
    Longo FJ
    J Cell Biol; 1977 Apr; 73(1):14-26. PubMed ID: 853058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution imaging of the cortex isolated from sea urchin eggs and embryos.
    Henson JH; Samasa B; Burg EC
    Methods Cell Biol; 2019; 151():419-432. PubMed ID: 30948022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multipolar mitosis in procaine-treated polyspermic sea urchin eggs and in eggs fertilized with UV-irradiated spermatozoa with a computer model to simulate the positioning of centrosomes.
    Czihak G; Kojima M; Linhart J; Vogel H
    Eur J Cell Biol; 1991 Aug; 55(2):255-61. PubMed ID: 1935990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of maternal centrosomes in unfertilized sea urchin eggs.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1992; 23(1):61-70. PubMed ID: 1356637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the de novo formation of centrioles: aster formation in the activated eggs of sea urchin.
    Miki-Noumura T
    J Cell Sci; 1977 Apr; 24():203-16. PubMed ID: 893543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 51-kd protein, a component of microtubule-organizing granules in the mitotic apparatus involved in aster formation in vitro.
    Toriyama M; Ohta K; Endo S; Sakai H
    Cell Motil Cytoskeleton; 1988; 9(2):117-28. PubMed ID: 3359491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies.
    Heidemann SR; Kirschner MW
    J Cell Biol; 1975 Oct; 67(1):105-17. PubMed ID: 1236852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical Forces Determining the Persistency and Centering Precision of Microtubule Asters.
    Tanimoto H; Sallé J; Dodin L; Minc N
    Nat Phys; 2018 Aug; 14(8):848-854. PubMed ID: 30079097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule-Based Mechanisms of Pronuclear Positioning.
    Meaders JL; Burgess DR
    Cells; 2020 Feb; 9(2):. PubMed ID: 32102180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes of the microtubule system corresponding to the unequal and spiral cleavage modes in the embryo of the zebra mussel, Dreissena polymorpha (Mollusca, Bivalvia).
    Luetjens CM; Dorresteijn AW
    Zygote; 1998 Aug; 6(3):239-48. PubMed ID: 9854796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.