These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 28215518)
1. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Wang J; Jain R; Shen X; Sun X; Cheng M; Liao JC; Yuan Q; Yan Y Metab Eng; 2017 Mar; 40():148-156. PubMed ID: 28215518 [TBL] [Abstract][Full Text] [Related]
2. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli. Zhang N; Wang J; Zhang Y; Gao H Enzyme Microb Technol; 2016 Nov; 93-94():51-58. PubMed ID: 27702485 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering of Klebsiella pneumoniae for the Production of 2-Butanone from Glucose. Chen Z; Sun H; Huang J; Wu Y; Liu D PLoS One; 2015; 10(10):e0140508. PubMed ID: 26465746 [TBL] [Abstract][Full Text] [Related]
4. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Liang K; Shen CR Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827 [TBL] [Abstract][Full Text] [Related]
5. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562 [TBL] [Abstract][Full Text] [Related]
6. Specificities of reactivating factors for adenosylcobalamin-dependent diol dehydratase and glycerol dehydratase. Tobimatsu T; Kajiura H; Toraya T Arch Microbiol; 2000; 174(1-2):81-8. PubMed ID: 10985746 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Knietsch A; Bowien S; Whited G; Gottschalk G; Daniel R Appl Environ Microbiol; 2003 Jun; 69(6):3048-60. PubMed ID: 12788698 [TBL] [Abstract][Full Text] [Related]
8. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Liu J; Chan SHJ; Brock-Nannestad T; Chen J; Lee SY; Solem C; Jensen PR Metab Eng; 2016 Jul; 36():57-67. PubMed ID: 26969254 [TBL] [Abstract][Full Text] [Related]
9. 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. McEwen JT; Kanno M; Atsumi S Metab Eng; 2016 Jul; 36():28-36. PubMed ID: 26979472 [TBL] [Abstract][Full Text] [Related]
10. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Nakashima N; Akita H; Hoshino T Metab Eng; 2014 Sep; 25():204-14. PubMed ID: 25108217 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel. Chen Z; Wu Y; Huang J; Liu D Bioresour Technol; 2015 Dec; 197():260-5. PubMed ID: 26342337 [TBL] [Abstract][Full Text] [Related]
13. Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli. Valdehuesa KN; Lee WK; Ramos KR; Cabulong RB; Choi J; Liu H; Nisola GM; Chung WJ Bioprocess Biosyst Eng; 2015 Sep; 38(9):1761-72. PubMed ID: 26048478 [TBL] [Abstract][Full Text] [Related]
14. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids. Kim S; Cheong S; Gonzalez R Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381 [TBL] [Abstract][Full Text] [Related]
15. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering. Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008 [TBL] [Abstract][Full Text] [Related]
16. Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Liu H; Lu T Metab Eng; 2015 May; 29():135-141. PubMed ID: 25796335 [TBL] [Abstract][Full Text] [Related]
17. Modification of an engineered Escherichia coli by a combinatorial strategy to improve 3,4-dihydroxybutyric acid production. Liu Y; Mao X; Zhang B; Lin J; Wei D Biotechnol Lett; 2021 Oct; 43(10):2035-2043. PubMed ID: 34448097 [TBL] [Abstract][Full Text] [Related]
18. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654 [TBL] [Abstract][Full Text] [Related]
19. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Candida tropicalis for efficient 1,2,4-butanetriol production. Li J; Xia Y; Wei B; Shen W; Yang H; Chen X Biochem Biophys Res Commun; 2024 May; 710():149876. PubMed ID: 38579537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]