These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 28215518)
21. Redesign of coenzyme B(12) dependent diol dehydratase to be resistant to the mechanism-based inactivation by glycerol and act on longer chain 1,2-diols. Yamanishi M; Kinoshita K; Fukuoka M; Saito T; Tanokuchi A; Ikeda Y; Obayashi H; Mori K; Shibata N; Tobimatsu T; Toraya T FEBS J; 2012 Mar; 279(5):793-804. PubMed ID: 22221669 [TBL] [Abstract][Full Text] [Related]
22. Microbial Cell Factories for Diol Production. Sabra W; Groeger C; Zeng AP Adv Biochem Eng Biotechnol; 2016; 155():165-97. PubMed ID: 26475465 [TBL] [Abstract][Full Text] [Related]
23. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Jain R; Yan Y Microb Cell Fact; 2011 Nov; 10():97. PubMed ID: 22074179 [TBL] [Abstract][Full Text] [Related]
24. Heterologous expression, purification, and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca. Tobimatsu T; Sakai T; Hashida Y; Mizoguchi N; Miyoshi S; Toraya T Arch Biochem Biophys; 1997 Nov; 347(1):132-40. PubMed ID: 9344474 [TBL] [Abstract][Full Text] [Related]
25. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Ng CY; Jung MY; Lee J; Oh MK Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729 [TBL] [Abstract][Full Text] [Related]
26. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Tai YS; Xiong M; Jambunathan P; Wang J; Wang J; Stapleton C; Zhang K Nat Chem Biol; 2016 Apr; 12(4):247-53. PubMed ID: 26854668 [TBL] [Abstract][Full Text] [Related]
27. The roles of diol dehydratase from pdu operon on glycerol catabolism in Klebsiella pneumoniae. Shu L; Wang Q; Jiang W; Tišma M; Oh B; Shi J; Lye GJ; Baganz F; Wei D; Hao J Enzyme Microb Technol; 2022 Jun; 157():110021. PubMed ID: 35231673 [TBL] [Abstract][Full Text] [Related]
28. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Hirokawa Y; Maki Y; Hanai T Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670 [TBL] [Abstract][Full Text] [Related]
29. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Ji XJ; Nie ZK; Huang H; Ren LJ; Peng C; Ouyang PK Appl Microbiol Biotechnol; 2011 Feb; 89(4):1119-25. PubMed ID: 20957355 [TBL] [Abstract][Full Text] [Related]
30. Production of Optically Pure ( Cao Y; Niu W; Guo J; Guo J; Liu H; Liu H; Xian M J Agric Food Chem; 2023 Dec; 71(50):20167-20176. PubMed ID: 38088131 [TBL] [Abstract][Full Text] [Related]
31. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes. Abdel-Ghany SE; Day I; Heuberger AL; Broeckling CD; Reddy AS Metab Eng; 2013 Nov; 20():109-20. PubMed ID: 24126081 [TBL] [Abstract][Full Text] [Related]
32. A protein factor is essential for in situ reactivation of glycerol-inactivated adenosylcobalamin-dependent diol dehydratase. Mori K; Tobimatsu T; Toraya T Biosci Biotechnol Biochem; 1997 Oct; 61(10):1729-33. PubMed ID: 9362119 [TBL] [Abstract][Full Text] [Related]
33. Distribution of coenzyme B12-dependent diol dehydratase and glycerol dehydratase in selected genera of Enterobacteriaceae and Propionibacteriaceae. Toraya T; Kuno S; Fukui S J Bacteriol; 1980 Mar; 141(3):1439-42. PubMed ID: 6988416 [TBL] [Abstract][Full Text] [Related]
34. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli. Li P; Wang M; Di H; Du Q; Zhang Y; Tan X; Xu P; Gao C; Jiang T; Lü C; Ma C Microb Cell Fact; 2024 Feb; 23(1):49. PubMed ID: 38347493 [TBL] [Abstract][Full Text] [Related]
35. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Ji XJ; Liu LG; Shen MQ; Nie ZK; Tong YJ; Huang H Biotechnol Bioeng; 2015 May; 112(5):1056-9. PubMed ID: 25450449 [TBL] [Abstract][Full Text] [Related]
36. Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Jeschek M; Bahls MO; Schneider V; Marlière P; Ward TR; Panke S Metab Eng; 2017 Mar; 40():33-40. PubMed ID: 28062280 [TBL] [Abstract][Full Text] [Related]
37. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Whitaker WB; Jones JA; Bennett RK; Gonzalez JE; Vernacchio VR; Collins SM; Palmer MA; Schmidt S; Antoniewicz MR; Koffas MA; Papoutsakis ET Metab Eng; 2017 Jan; 39():49-59. PubMed ID: 27815193 [TBL] [Abstract][Full Text] [Related]
38. Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. Jain R; Sun X; Yuan Q; Yan Y ACS Synth Biol; 2015 Jun; 4(6):746-56. PubMed ID: 25490349 [TBL] [Abstract][Full Text] [Related]
39. Directing enzyme devolution for biosynthesis of alkanols and 1,n-alkanediols from natural polyhydroxy compounds. Dai L; Tao F; Tang H; Guo Y; Shen Y; Xu P Metab Eng; 2017 Nov; 44():70-80. PubMed ID: 28928052 [TBL] [Abstract][Full Text] [Related]
40. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Chen Z; Sun X; Li Y; Yan Y; Yuan Q Metab Eng; 2017 Jan; 39():102-109. PubMed ID: 27816771 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]