These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28215808)

  • 1. Urea stabilisation and concentration for urine-diverting dry toilets: Urine dehydration in ash.
    Senecal J; Vinnerås B
    Sci Total Environ; 2017 May; 586():650-657. PubMed ID: 28215808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkaline dehydration of anion-exchanged human urine: Volume reduction, nutrient recovery and process optimisation.
    Simha P; Senecal J; Nordin A; Lalander C; Vinnerås B
    Water Res; 2018 Oct; 142():325-336. PubMed ID: 29890480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkaline dehydration of source-separated fresh human urine: Preliminary insights into using different dehydration temperature and media.
    Simha P; Lalander C; Nordin A; Vinnerås B
    Sci Total Environ; 2020 Sep; 733():139313. PubMed ID: 32446074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fertilizer from dried human urine added to ash and lime - a potential product from eco-sanitation system.
    Dutta S; Vinnerås B
    Water Sci Technol; 2016 Sep; 74(6):1436-1445. PubMed ID: 27685973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing the recovery of organic nitrogen from fresh human urine dosed with organic/inorganic acids and concentrated by evaporation in ambient conditions.
    Simha P; Vasiljev A; Randall DG; Vinnerås B
    Sci Total Environ; 2023 Jun; 879():163053. PubMed ID: 36966823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of nutrient reuse from a source-separated domestic wastewater system in Indonesia--case study: ecological sanitation pilot plant in Surabaya.
    Malisie AF; Prihandrijanti M; Otterpohl R
    Water Sci Technol; 2007; 56(5):141-8. PubMed ID: 17881847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human urine fertiliser in the Brazilian semi-arid: Environmental assessment and water-energy-nutrient nexus.
    Medeiros DL; Queiroz LM; Cohim E; Almeida-Neto JA; Kiperstok A
    Sci Total Environ; 2020 Apr; 713():136145. PubMed ID: 31962240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the nitrogen and phosphorus content of faecal-derived biochar via adsorption and precipitation from human urine.
    Koulouri ME; Templeton MR; Fowler GD
    J Environ Manage; 2024 Feb; 352():119981. PubMed ID: 38198837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater treatment.
    Spångberg J; Tidåker P; Jönsson H
    Sci Total Environ; 2014 Sep; 493():209-19. PubMed ID: 24946033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hygiene aspect of treating human urine by alkaline dehydration.
    Senecal J; Nordin A; Simha P; Vinnerås B
    Water Res; 2018 Nov; 144():474-481. PubMed ID: 30075443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis.
    Volpin F; Heo H; Hasan Johir MA; Cho J; Phuntsho S; Shon HK
    Water Res; 2019 Mar; 150():47-55. PubMed ID: 30503874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of pharmaceuticals by sorbent-amended struvite fertilisers recovered from human urine and their bioaccumulation in tomato fruit.
    de Boer MA; Hammerton M; Slootweg JC
    Water Res; 2018 Apr; 133():19-26. PubMed ID: 29353696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation efficiency in a whirlpool surface tension separator, separating faeces and toilet paper for nutrient recovery--pilot-scale study.
    Vinnerås B
    Water Sci Technol; 2004; 50(6):115-21. PubMed ID: 15536998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urea hydrolysis and long-term storage of source-separated urine for reuse as fertiliser is insufficient for the removal of anthropogenic micropollutants.
    Monetti J; Nieradzik L; Freguia S; Choi PM; O'Brien JW; Thomas KV; Ledezma P
    Water Res; 2022 Aug; 222():118891. PubMed ID: 35907300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human excreta for plant production.
    Heinonen-Tanski H; van Wijk-Sijbesma C
    Bioresour Technol; 2005 Mar; 96(4):403-11. PubMed ID: 15491820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material flow analysis as a tool for sustainable sanitation planning in developing countries: case study of Arba Minch, Ethiopia.
    Meinzinger F; Kröger K; Otterpohl R
    Water Sci Technol; 2009; 59(10):1911-20. PubMed ID: 19474484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-incubation in soil improves the nitrogen fertiliser value of hair waste.
    Malepfane NM; Muchaonyerwa P
    Environ Monit Assess; 2018 Jan; 190(2):94. PubMed ID: 29372330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.
    Martínez-Alcántara B; Martínez-Cuenca MR; Fernández C; Legaz F; Quiñones A
    PLoS One; 2016; 11(3):e0150851. PubMed ID: 26982183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Options for alternative types of sewerage and treatment systems directed to improvement of the overall performance.
    Otterpohl R
    Water Sci Technol; 2002; 45(3):149-58. PubMed ID: 11902466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze concentration for enrichment of nutrients in yellow water from no-mix toilets.
    Gulyas H; Bruhn P; Furmanska M; Hartrampf K; Kot K; Lüttenberg B; Mahmood Z; Stelmaszewska K; Otterpohl R
    Water Sci Technol; 2004; 50(6):61-8. PubMed ID: 15536991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.