These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28216008)

  • 1. Computational tools for exploring sequence databases as a resource for antimicrobial peptides.
    Porto WF; Pires AS; Franco OL
    Biotechnol Adv; 2017; 35(3):337-349. PubMed ID: 28216008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ANTIMIC: a database of antimicrobial sequences.
    Brahmachary M; Krishnan SP; Koh JL; Khan AM; Seah SH; Tan TW; Brusic V; Bajic VB
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D586-9. PubMed ID: 14681487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico design of antimicrobial peptides.
    Maccari G; Di Luca M; Nifosì R
    Methods Mol Biol; 2015; 1268():195-219. PubMed ID: 25555726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAMP: a useful resource for research on antimicrobial peptides.
    Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel host defense peptides and the absence of alpha-defensins in the bovine genome.
    Fjell CD; Jenssen H; Fries P; Aich P; Griebel P; Hilpert K; Hancock RE; Cherkasov A
    Proteins; 2008 Nov; 73(2):420-30. PubMed ID: 18442133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct profiling of antimicrobial peptide families.
    Khamis AM; Essack M; Gao X; Bajic VB
    Bioinformatics; 2015 Mar; 31(6):849-56. PubMed ID: 25388148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken.
    Lynn DJ; Higgs R; Gaines S; Tierney J; James T; Lloyd AT; Fares MA; Mulcahy G; O'Farrelly C
    Immunogenetics; 2004 Jun; 56(3):170-7. PubMed ID: 15148642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DRAMP: a comprehensive data repository of antimicrobial peptides.
    Fan L; Sun J; Zhou M; Zhou J; Lao X; Zheng H; Xu H
    Sci Rep; 2016 Apr; 6():24482. PubMed ID: 27075512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.
    Gao B; Sherman P; Luo L; Bowie J; Zhu S
    FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides.
    Juretić D; Vukičević D; Petrov D; Novković M; Bojović V; Lučić B; Ilić N; Tossi A
    Eur Biophys J; 2011 Apr; 40(4):371-85. PubMed ID: 21274708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity.
    Ng XY; Rosdi BA; Shahrudin S
    Biomed Res Int; 2015; 2015():212715. PubMed ID: 25802839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery.
    Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P
    Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer aided identification of a Hevein-like antimicrobial peptide of bell pepper leaves for biotechnological use.
    Games PD; daSilva EQ; Barbosa MO; Almeida-Souza HO; Fontes PP; deMagalhães MJ; Pereira PR; Prates MV; Franco GR; Faria-Campos A; Campos SV; Baracat-Pereira MC
    BMC Genomics; 2016 Dec; 17(Suppl 12):999. PubMed ID: 28105928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A linguistic model for the rational design of antimicrobial peptides.
    Loose C; Jensen K; Rigoutsos I; Stephanopoulos G
    Nature; 2006 Oct; 443(7113):867-9. PubMed ID: 17051220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational resources and tools for antimicrobial peptides.
    Liu S; Fan L; Sun J; Lao X; Zheng H
    J Pept Sci; 2017 Jan; 23(1):4-12. PubMed ID: 27966278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining antimicrobial peptides from small open reading frames in Ciona intestinalis.
    Lu Y; Zhuang Y; Liu J
    J Pept Sci; 2014 Jan; 20(1):25-9. PubMed ID: 24254748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective.
    Tian C; Gao B; Fang Q; Ye G; Zhu S
    BMC Genomics; 2010 Mar; 11():187. PubMed ID: 20302637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.