These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28216039)
1. Molecular cloning and function analysis of ClCRY1a and ClCRY1b, two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition. Yang L; Fu J; Qi S; Hong Y; Huang H; Dai S Gene; 2017 Jun; 617():32-43. PubMed ID: 28216039 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium. Fu J; Yang L; Dai S Mol Genet Genomics; 2015 Jun; 290(3):1039-54. PubMed ID: 25523304 [TBL] [Abstract][Full Text] [Related]
3. Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Fu J; Wang L; Wang Y; Yang L; Yang Y; Dai S Plant Physiol Biochem; 2014 Jan; 74():230-8. PubMed ID: 24316581 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide identification and characterization analysis of RWP-RK family genes reveal their role in flowering time of Chrysanthemum lavandulifolium. Zhang Q; Li J; Wen X; Deng C; Yang X; Dai S BMC Plant Biol; 2023 Apr; 23(1):197. PubMed ID: 37061708 [TBL] [Abstract][Full Text] [Related]
5. Yang LW; Wen XH; Fu JX; Dai SL Hortic Res; 2018; 5():58. PubMed ID: 30393540 [TBL] [Abstract][Full Text] [Related]
6. CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. Higuchi Y; Hisamatsu T Plant Sci; 2015 Aug; 237():1-7. PubMed ID: 26089146 [TBL] [Abstract][Full Text] [Related]
7. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Zhang M; Huang H; Dai S Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369 [TBL] [Abstract][Full Text] [Related]
8. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX. Oda A; Higuchi Y; Hisamatsu T Plant Sci; 2017 Jun; 259():86-93. PubMed ID: 28483056 [TBL] [Abstract][Full Text] [Related]
9. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum. Oda A; Higuchi Y; Hisamatsu T Plant Sci; 2020 Apr; 293():110417. PubMed ID: 32081265 [TBL] [Abstract][Full Text] [Related]
10. Gibberellic Acid Signaling Is Required to Induce Flowering of Chrysanthemums Grown under Both Short and Long Days. Dong B; Deng Y; Wang H; Gao R; Stephen GK; Chen S; Jiang J; Chen F Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28604637 [TBL] [Abstract][Full Text] [Related]
11. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. Oda A; Narumi T; Li T; Kando T; Higuchi Y; Sumitomo K; Fukai S; Hisamatsu T J Exp Bot; 2012 Feb; 63(3):1461-77. PubMed ID: 22140240 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic analysis of differentially expressed genes in the floral transition of the summer flowering chrysanthemum. Ren L; Liu T; Cheng Y; Sun J; Gao J; Dong B; Chen S; Chen F; Jiang J BMC Genomics; 2016 Aug; 17(1):673. PubMed ID: 27552984 [TBL] [Abstract][Full Text] [Related]
13. Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium. Fu J; Yang L; Dai S Plant Physiol Biochem; 2014 Jul; 80():337-47. PubMed ID: 24844451 [TBL] [Abstract][Full Text] [Related]
14. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum. Wang L; Sun J; Ren L; Zhou M; Han X; Ding L; Zhang F; Guan Z; Fang W; Chen S; Chen F; Jiang J Plant Biotechnol J; 2020 Jul; 18(7):1562-1572. PubMed ID: 31883436 [TBL] [Abstract][Full Text] [Related]
15. AfLFY, a LEAFY homolog in Argyranthemum frutescens, controls flowering time and leaf development. Hu J; Jin Q; Ma Y Sci Rep; 2020 Jan; 10(1):1616. PubMed ID: 32005948 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Cheng XF; Wang ZY Plant J; 2005 Sep; 43(5):758-68. PubMed ID: 16115071 [TBL] [Abstract][Full Text] [Related]
17. The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. Hisamatsu T; King RW J Exp Bot; 2008; 59(14):3821-9. PubMed ID: 18931352 [TBL] [Abstract][Full Text] [Related]
18. The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). King RW; Hisamatsu T; Goldschmidt EE; Blundell C J Exp Bot; 2008; 59(14):3811-20. PubMed ID: 18836142 [TBL] [Abstract][Full Text] [Related]
19. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Komiya R; Yokoi S; Shimamoto K Development; 2009 Oct; 136(20):3443-50. PubMed ID: 19762423 [TBL] [Abstract][Full Text] [Related]
20. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Laubinger S; Marchal V; Le Gourrierec J; Wenkel S; Adrian J; Jang S; Kulajta C; Braun H; Coupland G; Hoecker U Development; 2006 Aug; 133(16):3213-22. PubMed ID: 16854975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]