These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 28216990)
1. A quasi-Newton algorithm for large-scale nonlinear equations. Huang L J Inequal Appl; 2017; 2017(1):35. PubMed ID: 28216990 [TBL] [Abstract][Full Text] [Related]
2. A new filter QP-free method for the nonlinear inequality constrained optimization problem. Shang Y; Jin ZF; Pu D J Inequal Appl; 2018; 2018(1):278. PubMed ID: 30839771 [TBL] [Abstract][Full Text] [Related]
3. A tensor trust-region model for nonlinear system. Wang S; Liu S J Inequal Appl; 2018; 2018(1):343. PubMed ID: 30839853 [TBL] [Abstract][Full Text] [Related]
4. A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations. Yuan G; Hu W J Inequal Appl; 2018; 2018(1):113. PubMed ID: 29780210 [TBL] [Abstract][Full Text] [Related]
5. A modified three-term PRP conjugate gradient algorithm for optimization models. Wu Y J Inequal Appl; 2017; 2017(1):97. PubMed ID: 28529434 [TBL] [Abstract][Full Text] [Related]
6. A globally convergent QP-free algorithm for nonlinear semidefinite programming. Li JL; Yang ZP; Jian JB J Inequal Appl; 2017; 2017(1):145. PubMed ID: 28680248 [TBL] [Abstract][Full Text] [Related]
7. A modified nonmonotone BFGS algorithm for unconstrained optimization. Li X; Wang B; Hu W J Inequal Appl; 2017; 2017(1):183. PubMed ID: 28845092 [TBL] [Abstract][Full Text] [Related]
8. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models. Yuan G; Duan X; Liu W; Wang X; Cui Z; Sheng Z PLoS One; 2015; 10(10):e0140071. PubMed ID: 26502409 [TBL] [Abstract][Full Text] [Related]
9. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries. Asgharzadeh H; Borazjani I J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172 [TBL] [Abstract][Full Text] [Related]
10. A Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations. Li Y; Yuan G; Wei Z PLoS One; 2015; 10(5):e0120993. PubMed ID: 25950725 [TBL] [Abstract][Full Text] [Related]
11. Alternative structured spectral gradient algorithms for solving nonlinear least-squares problems. Yahaya MM; Kumam P; Awwal AM; Aji S Heliyon; 2021 Jul; 7(7):e07499. PubMed ID: 34345725 [TBL] [Abstract][Full Text] [Related]
12. Accelerated multimodel Newton-type algorithms for faster convergence of ground and excited state coupled cluster equations. Kjønstad EF; Folkestad SD; Koch H J Chem Phys; 2020 Jul; 153(1):014104. PubMed ID: 32640809 [TBL] [Abstract][Full Text] [Related]
13. A limited-memory, quasi-Newton preconditioner for nonnegatively constrained image reconstruction. Bardsley JM J Opt Soc Am A Opt Image Sci Vis; 2004 May; 21(5):724-31. PubMed ID: 15139424 [TBL] [Abstract][Full Text] [Related]
14. Derivative-free HS-DY-type method for solving nonlinear equations and image restoration. Abubakar AB; Kumam P; Ibrahim AH; Rilwan J Heliyon; 2020 Nov; 6(11):e05400. PubMed ID: 33294653 [TBL] [Abstract][Full Text] [Related]
15. Quadratically convergent algorithm for computing real root of non-linear transcendental equations. Thota S; Srivastav VK BMC Res Notes; 2018 Dec; 11(1):909. PubMed ID: 30572943 [TBL] [Abstract][Full Text] [Related]
17. A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing. Ibrahim AH; Kumam P; Abubakar AB; Jirakitpuwapat W; Abubakar J Heliyon; 2020 Mar; 6(3):e03466. PubMed ID: 32154420 [TBL] [Abstract][Full Text] [Related]
18. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization. Li X; Zhao X; Duan X; Wang X PLoS One; 2015; 10(9):e0137166. PubMed ID: 26381742 [TBL] [Abstract][Full Text] [Related]
19. A family of conjugate gradient methods for large-scale nonlinear equations. Feng D; Sun M; Wang X J Inequal Appl; 2017; 2017(1):236. PubMed ID: 28989261 [TBL] [Abstract][Full Text] [Related]
20. Efficient quantum algorithm for dissipative nonlinear differential equations. Liu JP; Kolden HØ; Krovi HK; Loureiro NF; Trivisa K; Childs AM Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34446548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]