BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 28217209)

  • 1. An update on the Application of Nanotechnology in Bone Tissue Engineering.
    Griffin MF; Kalaskar DM; Seifalian A; Butler PE
    Open Orthop J; 2016; 10():836-848. PubMed ID: 28217209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of nanomaterials for bone repair and regeneration.
    McMahon RE; Wang L; Skoracki R; Mathur AB
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):387-97. PubMed ID: 23281143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposites for bone tissue regeneration.
    Sahoo NG; Pan YZ; Li L; He CB
    Nanomedicine (Lond); 2013 Apr; 8(4):639-53. PubMed ID: 23560413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnology-based bone regeneration in orthopedics: a review of recent trends.
    Liang W; Zhou C; Bai J; Zhang H; Long H; Jiang B; Liu L; Xia L; Jiang C; Zhang H; Zhao J
    Nanomedicine (Lond); 2024 Feb; 19(3):255-275. PubMed ID: 38275154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications.
    Dibazar ZE; Nie L; Azizi M; Nekounam H; Hamidi M; Shavandi A; Izadi Z; Delattre C
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic Cues of Bioactive Nanoparticles and Nanofibrous Structure in Bone Scaffolds to Stimulate Osteogenesis and Angiogenesis.
    Kim JJ; El-Fiqi A; Kim HW
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2059-2073. PubMed ID: 28029246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine.
    Smith IO; Liu XH; Smith LA; Ma PX
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(2):226-36. PubMed ID: 20049793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces.
    Cross LM; Thakur A; Jalili NA; Detamore M; Gaharwar AK
    Acta Biomater; 2016 Sep; 42():2-17. PubMed ID: 27326917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells.
    Andalib N; Kehtari M; Seyedjafari E; Motamed N; Matin MM
    Cell Tissue Bank; 2021 Sep; 22(3):467-477. PubMed ID: 33398491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review.
    Siddiqui N; Kishori B; Rao S; Anjum M; Hemanth V; Das S; Jabbari E
    Mol Biotechnol; 2021 May; 63(5):363-388. PubMed ID: 33689142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials and bone regeneration.
    Gong T; Xie J; Liao J; Zhang T; Lin S; Lin Y
    Bone Res; 2015; 3():15029. PubMed ID: 26558141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
    Deng M; James R; Laurencin CT; Kumbar SG
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoinductive biomaterial geometries for bone regenerative engineering.
    Ozdemir T; Higgins AM; Brown JL
    Curr Pharm Des; 2013; 19(19):3446-55. PubMed ID: 23432675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering.
    Venugopal J; Prabhakaran MP; Zhang Y; Low S; Choon AT; Ramakrishna S
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):2065-81. PubMed ID: 20308115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.