These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 2821744)

  • 1. Heme enzyme crystal structures.
    Poulos TL
    Adv Inorg Biochem; 1988; 7():1-36. PubMed ID: 2821744
    [No Abstract]   [Full Text] [Related]  

  • 2. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase.
    Harvey JN; Bathelt CM; Mulholland AJ
    J Comput Chem; 2006 Sep; 27(12):1352-62. PubMed ID: 16788912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-based radicals in the catalase-peroxidase of synechocystis PCC6803: a multifrequency EPR investigation of wild-type and variants on the environment of the heme active site.
    Ivancich A; Jakopitsch C; Auer M; Un S; Obinger C
    J Am Chem Soc; 2003 Nov; 125(46):14093-102. PubMed ID: 14611246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 2.0 A crystal structure of catalase-peroxidase from Haloarcula marismortui.
    Yamada Y; Fujiwara T; Sato T; Igarashi N; Tanaka N
    Nat Struct Biol; 2002 Sep; 9(9):691-5. PubMed ID: 12172540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the cytochrome c peroxidase of Pseudomonas aeruginosa. The role of a heme-linked protein loop: a mutagenesis study.
    Hsiao HC; Boycheva S; Watmough NJ; Brittain T
    J Inorg Biochem; 2007 Aug; 101(8):1133-9. PubMed ID: 17568678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Reconstitution of hemoproteins (author's transl)].
    Sano S
    Tanpakushitsu Kakusan Koso; 1975 Oct; 20(12):1079-93. PubMed ID: 172976
    [No Abstract]   [Full Text] [Related]  

  • 7. Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases.
    Hersleth HP; Ryde U; Rydberg P; Görbitz CH; Andersson KK
    J Inorg Biochem; 2006 Apr; 100(4):460-76. PubMed ID: 16510192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase.
    Welinder KG
    Eur J Biochem; 1985 Sep; 151(3):497-504. PubMed ID: 2992968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation and catalysis of the di-heme cytochrome c peroxidase from Paracoccus pantotrophus.
    Echalier A; Goodhew CF; Pettigrew GW; Fülöp V
    Structure; 2006 Jan; 14(1):107-17. PubMed ID: 16407070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases.
    Zámocký M; Dunand C
    FEBS Lett; 2006 Dec; 580(28-29):6655-64. PubMed ID: 17126331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalase activity of Nalpha-acetyl-microperoxidase-8.
    Jeng WY; Tsai YH; Chuang WJ
    J Pept Res; 2004 Sep; 64(3):104-9. PubMed ID: 15317500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding heme cavity structure of peroxidases: comparison of electronic absorption and resonance Raman spectra with crystallographic results.
    Smulevich G
    Biospectroscopy; 1998; 4(5 Suppl):S3-17. PubMed ID: 9787910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luminescent visualization of low amounts of cytochrome P450 and hemoproteins by luminol in acrylamide gels.
    Bonfils C; Charasse S; Bonfils JP; Larroque C
    Anal Biochem; 1995 Apr; 226(2):302-6. PubMed ID: 7793632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Contribution of protein conformation to stereochemistry and reactivity of the active center of heme proteins and enzymes. The existence of horseradish peroxidase conformations and their possible role in the catalysis mechanism].
    Sharonov IuA; Pis'menskiĭ VF; Iarmola EG
    Mol Biol (Mosk); 1988; 22(6):1491-506. PubMed ID: 3252148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coordination and spin states of yeast cytochrome c peroxidase and their implication to peroxidase mechanism.
    Anni H; Yonetani T
    Prog Clin Biol Res; 1988; 274():437-49. PubMed ID: 2841676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Badger's rule to heme and non-heme iron-oxygen bonds: an examination of ferryl protonation states.
    Green MT
    J Am Chem Soc; 2006 Feb; 128(6):1902-6. PubMed ID: 16464091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Where is the radical in compound I of cytochrome c peroxidase? Clues from crystallography and mutagenesis.
    Edwards SL; Mauro JM; Fishel LA; Wang JM; Miller MA; Xuong NH; Kraut J
    Prog Clin Biol Res; 1988; 274():463-75. PubMed ID: 2841677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases.
    Pettigrew GW; Echalier A; Pauleta SR
    J Inorg Biochem; 2006 Apr; 100(4):551-67. PubMed ID: 16434100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent heme structure in the reduced forms of the bacterial cytochrome c peroxidase from Paracoccus pantotrophus.
    Pauleta SR; Lu Y; Goodhew CF; Moura I; Pettigrew GW; Shelnutt JA
    Biochemistry; 2008 May; 47(21):5841-50. PubMed ID: 18442258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HTHP: a novel class of hexameric, tyrosine-coordinated heme proteins.
    Jeoung JH; Pippig DA; Martins BM; Wagener N; Dobbek H
    J Mol Biol; 2007 May; 368(4):1122-31. PubMed ID: 17395199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.