These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28217768)

  • 1. Phased peristaltic micropumping for continuous sampling and hardcoded droplet generation.
    Nightingale AM; Evans GW; Xu P; Kim BJ; Hassan SU; Niu X
    Lab Chip; 2017 Mar; 17(6):1149-1157. PubMed ID: 28217768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechanism for user-friendly and self-activated microdroplet generation capable of programmable control.
    Jiang Y; Du L; Li Y; Mu Q; Cui Z; Zhou J; Wu W
    Analyst; 2018 Aug; 143(16):3798-3807. PubMed ID: 29953139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics.
    Li X; Hu J; Easley CJ
    Lab Chip; 2018 Sep; 18(19):2926-2935. PubMed ID: 30112543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile on-demand droplet generation for controlled encapsulation.
    Rhee M; Liu P; Meagher RJ; Light YK; Singh AK
    Biomicrofluidics; 2014 May; 8(3):034112. PubMed ID: 25379072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device.
    Filatov NA; Evstrapov AA; Bukatin AS
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34198785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of low-cost, miniaturized peristaltic and Venturi pumps in droplet microfluidics.
    Davis JJ; Padalino M; Kaplitz AS; Murray G; Foster SW; Maturano J; Grinias JP
    Anal Chim Acta; 2021 Mar; 1151():338230. PubMed ID: 33608076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive Micropump for Highly Stable, Long-Termed, and Large Volume of Droplet Generation/Transport Inside 3D Microchannels Capable of Surfactant-Free and Droplet-Based Thermocycled Reverse Transcription-Polymerase Chain Reactions Based on a Single Thermostatic Heater.
    Li Y; Jiang Y; Wang K; Wu W
    Anal Chem; 2018 Oct; 90(20):11925-11932. PubMed ID: 30215252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-Junction Microfluidic Droplet Generator.
    Yao J; Lin F; Kim HS; Park J
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31771159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.
    Okura N; Nakashoji Y; Koshirogane T; Kondo M; Tanaka Y; Inoue K; Hashimoto M
    Electrophoresis; 2017 Oct; 38(20):2666-2672. PubMed ID: 28657130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR.
    Xu X; Yuan H; Song R; Yu M; Chung HY; Hou Y; Shang Y; Zhou H; Yao S
    Biomicrofluidics; 2018 Jan; 12(1):014103. PubMed ID: 29333205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Droplet Generation with In-Series Droplet T-Junctions Induced by Gravity-Induced Flow.
    Bajgiran KR; Cordova AS; Elkhanoufi R; Dorman JA; Melvin AT
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Tweezer for Droplet Transportation, Extraction, Merging and DNA Analysis.
    Shahid A; Chong S; Mahony J; Deen MJ; Selvaganapathy PR
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous measurement of enzymatic kinetics in droplet flow for point-of-care monitoring.
    Hassan SU; Nightingale AM; Niu X
    Analyst; 2016 May; 141(11):3266-73. PubMed ID: 27007645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable active droplet generation enabled by integrated pneumatic micropumps.
    Zeng Y; Shin M; Wang T
    Lab Chip; 2013 Jan; 13(2):267-73. PubMed ID: 23160148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.