These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 28217997)
21. Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as. Kocks C; Boltengagen A; Piwecka M; Rybak-Wolf A; Rajewsky N Methods Mol Biol; 2018; 1724():77-96. PubMed ID: 29322442 [TBL] [Abstract][Full Text] [Related]
22. mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification. Coleman JR; Culley DE; Chrisler WB; Brockman FJ J Microbiol Methods; 2007 Dec; 71(3):246-55. PubMed ID: 17949838 [TBL] [Abstract][Full Text] [Related]
23. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization. Lin C; Jiang M; Liu L; Chen X; Zhao Y; Chen L; Hong Y; Wang X; Hong C; Yao X; Ke R N Biotechnol; 2021 Mar; 61():116-123. PubMed ID: 33301924 [TBL] [Abstract][Full Text] [Related]
24. An efficient nonlinear hybridization chain reaction-based sensitive fluorescent assay for in situ estimation of calcium channel protein expression on bone marrow cells. Li P; Zhang H; Wang D; Tao Y; Zhang L; Zhang W; Wang X Anal Chim Acta; 2018 Dec; 1041():25-32. PubMed ID: 30340687 [TBL] [Abstract][Full Text] [Related]
26. Quantitative PCR--new diagnostic tool for quantifying specific mRNA and DNA molecules: HER2/neu DNA quantification with LightCycler real-time PCR in comparison with immunohistochemistry and fluorescence in situ hybridization. Schlemmer BO; Sorensen BS; Overgaard J; Olsen KE; Gjerdrum LM; Nexo E Scand J Clin Lab Invest; 2004; 64(5):511-22. PubMed ID: 15276916 [TBL] [Abstract][Full Text] [Related]
27. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Wang X; Jiang A; Hou T; Li H; Li F Biosens Bioelectron; 2015 Aug; 70():324-9. PubMed ID: 25840018 [TBL] [Abstract][Full Text] [Related]
28. Amplified Fluorescence Egloff S; Melnychuk N; Cruz Da Silva E; Reisch A; Martin S; Klymchenko AS ACS Nano; 2022 Jan; 16(1):1381-1394. PubMed ID: 34928570 [TBL] [Abstract][Full Text] [Related]
29. Hybridization Chain Reaction for Direct mRNA Detection Without Nucleic Acid Purification. Xu Y; Zheng Z Methods Mol Biol; 2018; 1649():187-196. PubMed ID: 29130198 [TBL] [Abstract][Full Text] [Related]
30. Two-Dimensional Hybridization Chain Reaction Strategy for Highly Sensitive Analysis of Intracellular mRNA. Miao P; Tang Y Anal Chem; 2020 Sep; 92(18):12700-12709. PubMed ID: 32806895 [TBL] [Abstract][Full Text] [Related]
31. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Yamaguchi T; Kawakami S; Hatamoto M; Imachi H; Takahashi M; Araki N; Yamaguchi T; Kubota K Environ Microbiol; 2015 Jul; 17(7):2532-41. PubMed ID: 25523128 [TBL] [Abstract][Full Text] [Related]
32. Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells. Coassin SR; Orjalo AV; Semaan SJ; Johansson HE Methods Mol Biol; 2014; 1211():189-99. PubMed ID: 25218386 [TBL] [Abstract][Full Text] [Related]
33. Detection of endogenous K-ras mRNA in living cells at a single base resolution by a PNA molecular beacon. Kam Y; Rubinstein A; Nissan A; Halle D; Yavin E Mol Pharm; 2012 Mar; 9(3):685-93. PubMed ID: 22289057 [TBL] [Abstract][Full Text] [Related]
34. FISH: recent advances and diagnostic aspects. Luke S; Shepelsky M Cell Vis; 1998; 5(1):49-53. PubMed ID: 9660726 [TBL] [Abstract][Full Text] [Related]
35. Sensitive mRNA detection by fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification. van de Corput MP; Dirks RW; van Gijlswijk RP; van Binnendijk E; Hattinger CM; de Paus RA; Landegent JE; Raap AK J Histochem Cytochem; 1998 Nov; 46(11):1249-59. PubMed ID: 9774624 [TBL] [Abstract][Full Text] [Related]
36. Analysis of specific RNA in cultured cells through quantitative integration of q-PCR and N-SIM single cell FISH images: Application to hormonal stimulation of StAR transcription. Lee J; Foong YH; Musaitif I; Tong T; Jefcoate C Mol Cell Endocrinol; 2016 Jul; 429():93-105. PubMed ID: 27091298 [TBL] [Abstract][Full Text] [Related]
37. Ultrasensitive quantification of multiplexed mRNA variants Jia Y; Han J; Wang H; Hong W; Wang H; Zhang M; Li Z Chem Commun (Camb); 2021 Sep; 57(78):10011-10014. PubMed ID: 34498616 [TBL] [Abstract][Full Text] [Related]
38. Multiplexed Quantitative In Situ Hybridization for Mammalian or Bacterial Cells in Suspension: qHCR Flow Cytometry (v3.0). Schwarzkopf M; Choi HMT; Pierce NA Methods Mol Biol; 2020; 2148():127-141. PubMed ID: 32394379 [TBL] [Abstract][Full Text] [Related]
39. Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells. Orjalo AV; Johansson HE Methods Mol Biol; 2016; 1402():119-134. PubMed ID: 26721487 [TBL] [Abstract][Full Text] [Related]
40. Long-depth imaging of specific gene expressions in whole-mount mouse embryos with single-photon excitation confocal fluorescence microscopy and FISH. Palmes-Saloma C; Saloma C J Struct Biol; 2000 Jul; 131(1):56-66. PubMed ID: 10945970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]