These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28218325)

  • 1. Competition between excluded-volume and electrostatic interactions for nanogel swelling: effects of the counterion valence and nanogel charge.
    Adroher-Benítez I; Martín-Molina A; Ahualli S; Quesada-Pérez M; Odriozola G; Moncho-Jordá A
    Phys Chem Chem Phys; 2017 Mar; 19(9):6838-6848. PubMed ID: 28218325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective charge of ionic microgel particles in the swollen and collapsed states: the role of the steric microgel-ion repulsion.
    Moncho-Jordá A
    J Chem Phys; 2013 Aug; 139(6):064906. PubMed ID: 23947889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations.
    Quesada-Pérez M; Ahualli S; Martín-Molina A
    J Chem Phys; 2014 Sep; 141(12):124903. PubMed ID: 25273470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the scattered light by dilute aqueous dispersions of nanogel particles.
    Callejas-Fernández J; Ramos J; Forcada J; Moncho-Jordá A
    J Colloid Interface Sci; 2015 Jul; 450():310-315. PubMed ID: 25837408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling of ionic microgel particles in the presence of excluded-volume interactions: a density functional approach.
    Moncho-Jordá A; Dzubiella J
    Phys Chem Chem Phys; 2016 Feb; 18(7):5372-85. PubMed ID: 26818708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct determination of forces between charged nanogels through coarse-grained simulations.
    Quesada-Pérez M; Maroto-Centeno JA; Martín-Molina A; Moncho-Jordá A
    Phys Rev E; 2018 Apr; 97(4-1):042608. PubMed ID: 29758622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion permeation inside microgel particles induced by specific interactions: from charge inversion to overcharging.
    Moncho-Jordá A; Adroher-Benítez I
    Soft Matter; 2014 Aug; 10(31):5810-23. PubMed ID: 24974885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal conformational properties of polymers in ionic nanogels.
    Kobayashi H; Winkler RG
    Sci Rep; 2016 Feb; 6():19836. PubMed ID: 26830457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic effects in collapse of polyelectrolyte brushes.
    Jiang T; Wu J
    J Phys Chem B; 2008 Jul; 112(26):7713-20. PubMed ID: 18543988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA.
    Lamm G; Wong L; Pack GR
    Biopolymers; 1994 Feb; 34(2):227-37. PubMed ID: 8142591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Phase and Morphological Behavior of Dispersions of Synergistic Dual-Stimuli-Responsive Poly(
    Town A; Niezabitowska E; Kavanagh J; Barrow M; Kearns VR; García-Tuñón E; McDonald TO
    J Phys Chem B; 2019 Jul; 123(29):6303-6313. PubMed ID: 31251624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counterion-only electrical double layers: An application of density functional theory.
    Liu L
    J Chem Phys; 2015 Aug; 143(6):064902. PubMed ID: 26277161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations.
    Wang L; Liang H; Wu J
    J Chem Phys; 2010 Jul; 133(4):044906. PubMed ID: 20687685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of discontinuous volume phase transitions in highly-charged crosslinked polyelectrolyte networks with explicit counterions in good solvent.
    Yin DW; Yan Q; de Pablo JJ
    J Chem Phys; 2005 Nov; 123(17):174909. PubMed ID: 16375571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charged Dendrimers with Finite-Size Counterions.
    Kłos JS; Paturej J
    J Phys Chem B; 2020 Sep; 124(36):7957-7968. PubMed ID: 32790370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions.
    Guerrero-García GI; González-Tovar E; de la Cruz MO
    J Chem Phys; 2011 Aug; 135(5):054701. PubMed ID: 21823720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stimuli-responsive multiphase behavior of core-shell nanogels with opposite charges and their potential application in in situ gelling system.
    Yu T; Geng S; Li H; Wan J; Peng X; Liu W; Zhao Y; Yang X; Xu H
    Colloids Surf B Biointerfaces; 2015 Dec; 136():99-104. PubMed ID: 26364090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume transition effects on the correlations and effective interactions among highly charged microgels.
    Aguirre-Manzo LA; González-Mozuelos P
    Soft Matter; 2020 Jun; 16(21):5081-5093. PubMed ID: 32458939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of head group charges, ionic sizes, and dielectric images on charge inversion: a Monte Carlo simulation study.
    Wang ZY; Ma YQ
    J Phys Chem B; 2010 Oct; 114(42):13386-92. PubMed ID: 20925354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.