These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 28218327)
1. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Duan Z; Liu D; Zhang G; Li Q; Liu C; Fan S Nanoscale; 2017 Mar; 9(9):3133-3139. PubMed ID: 28218327 [TBL] [Abstract][Full Text] [Related]
2. Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study. Zhang J; Jiang C; Jiang D; Peng HX Phys Chem Chem Phys; 2014 Mar; 16(9):4378-85. PubMed ID: 24457262 [TBL] [Abstract][Full Text] [Related]
3. Thermal rectification in a polymer-functionalized single-wall carbon nanotube. Pal S; Puri IK Nanotechnology; 2014 Aug; 25(34):345401. PubMed ID: 25078473 [TBL] [Abstract][Full Text] [Related]
4. Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube-Graphene Intramolecular Junctions. Yang X; Yu D; Cao B; To AC ACS Appl Mater Interfaces; 2017 Jan; 9(1):29-35. PubMed ID: 27936563 [TBL] [Abstract][Full Text] [Related]
5. Thermal Rectifier and Thermal Transistor of 1T/2H MoS Yang X; Wang S; Wang C; Lu R; Zheng X; Zhang T; Liu M; Zheng J; Chen H ACS Appl Mater Interfaces; 2022 Jan; 14(3):4434-4442. PubMed ID: 35030307 [TBL] [Abstract][Full Text] [Related]
6. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Xiao L; Zhang Y; Wang Y; Liu K; Wang Z; Li T; Jiang Z; Shi J; Liu L; Li Q; Zhao Y; Feng Z; Fan S; Jiang K Nanotechnology; 2011 Jan; 22(2):025502. PubMed ID: 21135478 [TBL] [Abstract][Full Text] [Related]
7. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Qiu L; Wang X; Su G; Tang D; Zheng X; Zhu J; Wang Z; Norris PM; Bradford PD; Zhu Y Sci Rep; 2016 Feb; 6():21014. PubMed ID: 26880221 [TBL] [Abstract][Full Text] [Related]
8. Significant thermal rectification induced by phonon mismatch of functional groups in a single-molecule junction. Hua R; Jiang Y; Shi L; Liang S; Zhang C; Song Y; Dong RY; Dong Y J Phys Condens Matter; 2023 Dec; 36(13):. PubMed ID: 38096577 [TBL] [Abstract][Full Text] [Related]
9. Giant Thermal Rectification from Single-Carbon Nanotube-Graphene Junction. Yang X; Yu D; Cao B ACS Appl Mater Interfaces; 2017 Jul; 9(28):24078-24084. PubMed ID: 28636314 [TBL] [Abstract][Full Text] [Related]
10. Experimental Study on Thermal Conductivity and Rectification in Suspended Monolayer MoS Yang X; Zheng X; Liu Q; Zhang T; Bai Y; Yang Z; Chen H; Liu M ACS Appl Mater Interfaces; 2020 Jun; 12(25):28306-28312. PubMed ID: 32478499 [TBL] [Abstract][Full Text] [Related]
12. Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings. Taphouse JH; Bougher TL; Singh V; Abadi PP; Graham S; Cola BA Nanotechnology; 2013 Mar; 24(10):105401. PubMed ID: 23425973 [TBL] [Abstract][Full Text] [Related]
13. Interface thermal resistance induced by geometric shape mismatch: A multiparticle Lorentz gas model. Wang T; Yang Y; Wu Y; Xu L; Ma D; Zhang L Phys Rev E; 2021 Aug; 104(2-1):024801. PubMed ID: 34525599 [TBL] [Abstract][Full Text] [Related]
14. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Li Q; Liu C; Wang X; Fan S Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532 [TBL] [Abstract][Full Text] [Related]
15. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433 [TBL] [Abstract][Full Text] [Related]
17. Copper/carbon nanotube composites: research trends and outlook. Sundaram RM; Sekiguchi A; Sekiya M; Yamada T; Hata K R Soc Open Sci; 2018 Nov; 5(11):180814. PubMed ID: 30564393 [TBL] [Abstract][Full Text] [Related]
18. Fast-response, agile and functional soft actuators based on highly-oriented carbon nanotube thin films. Li Q; Liu C Nanotechnology; 2019 Nov; 31(8):. PubMed ID: 31627200 [TBL] [Abstract][Full Text] [Related]
19. Raman characterization of thermal conduction in transparent carbon nanotube films. Kim D; Zhu L; Han CS; Kim JH; Baik S Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446 [TBL] [Abstract][Full Text] [Related]
20. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation. Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]