These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28218327)

  • 21. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials.
    Liang Q; Yao X; Wang W; Liu Y; Wong CP
    ACS Nano; 2011 Mar; 5(3):2392-401. PubMed ID: 21384860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites.
    Liu F; Liu X; Hu N; Ning H; Atobe S; Yan C; Mo F; Fu S; Zhang J; Wang Y; Mu X
    Sci Rep; 2017 Oct; 7(1):14700. PubMed ID: 29089620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film.
    Wang M; Chen H; Lin W; Li Z; Li Q; Chen M; Meng F; Xing Y; Yao Y; Wong CP; Li Q
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):539-44. PubMed ID: 24341574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.
    Ping L; Hou PX; Liu C; Li J; Zhao Y; Zhang F; Ma C; Tai K; Cong H; Cheng HM
    Nanoscale; 2017 Jun; 9(24):8213-8219. PubMed ID: 28580987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites.
    Ejaz F; Hwang LK; Son J; Kim JS; Lee DS; Kwon B
    Sci Rep; 2022 Aug; 12(1):13614. PubMed ID: 35948586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and Bolometric Responses of MoS
    Wang Q; Wu Y; Deng X; Xiang L; Xu K; Li Y; Xie Y
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Carbon Nanotube Addition on the Interfacial Adhesion between Graphene and Epoxy: A Molecular Dynamics Simulation.
    Sun S; Chen S; Weng X; Shan F; Hu S
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube.
    Wang HD; Liu JH; Zhang X; Zhang RF; Wei F
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2939-43. PubMed ID: 26353517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Contact Pressure on the Performance of Carbon Nanotube Arrays Thermal Interface Material.
    Pei Y; Zhong H; Wang M; Zhang P; Zhao Y
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30227621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.
    Hwang HJ; Joo SJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach.
    Yousefi F; Khoeini F; Rajabpour A
    Nanotechnology; 2020 Apr; 31(28):285707. PubMed ID: 32217831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation.
    Farzadian O; Spitas C; Kostas K
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33601345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure.
    Chen J; Meng L
    ACS Omega; 2022 Aug; 7(32):28030-28040. PubMed ID: 35990432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.
    Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L
    ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
    Liu M; Du Y; Miao YE; Ding Q; He S; Tjiu WW; Pan J; Liu T
    Nanoscale; 2015 Jan; 7(3):1037-46. PubMed ID: 25474256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Rectification across an Asymmetric Layer Carbon Nanotube van der Waals Heterostructure.
    Wu N; Liu Y; Wang S; Xing Z
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9155-9168. PubMed ID: 38324388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites.
    Duong HM; Yamamoto N; Papavassiliou DV; Maruyama S; Wardle BL
    Nanotechnology; 2009 Apr; 20(15):155702. PubMed ID: 19420554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.